Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am Nat ; 204(2): 133-146, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39008835

RESUMEN

AbstractInfectious disease dynamics operate across biological scales: pathogens replicate within hosts but transmit among populations. Functional changes in the pathogen-host interaction thus generate cascading effects across organizational scales. We investigated within-host dynamics and among-host transmission of three strains (SAT-1, -2, -3) of foot-and-mouth disease viruses (FMDVs) in their wildlife host, African buffalo. We combined data on viral dynamics and host immune responses with mathematical models to ask the following questions: How do viral and immune dynamics vary among strains? Which viral and immune parameters determine viral fitness within hosts? And how do within-host dynamics relate to virus transmission? Our data reveal contrasting within-host dynamics among viral strains, with SAT-2 eliciting more rapid and effective immune responses than SAT-1 and SAT-3. Within-host viral fitness was overwhelmingly determined by variation among hosts in immune response activation rates but not by variation among individual hosts in viral growth rate. Our analyses investigating across-scale linkages indicate that viral replication rate in the host correlates with transmission rates among buffalo and that adaptive immune activation rate determines the infectious period. These parameters define the virus's relative basic reproductive number (ℛ0), suggesting that viral invasion potential may be predictable from within-host dynamics.


Asunto(s)
Búfalos , Virus de la Fiebre Aftosa , Fiebre Aftosa , Animales , Búfalos/virología , Virus de la Fiebre Aftosa/inmunología , Virus de la Fiebre Aftosa/crecimiento & desarrollo , Fiebre Aftosa/transmisión , Fiebre Aftosa/virología , Fiebre Aftosa/inmunología , Interacciones Huésped-Patógeno/inmunología , Replicación Viral , Modelos Biológicos
2.
PLoS Comput Biol ; 19(9): e1011448, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37672554

RESUMEN

African horse sickness is an equine orbivirus transmitted by Culicoides Latreille biting midges. In the last 80 years, it has caused several devastating outbreaks in the equine population in Europe, the Far and Middle East, North Africa, South-East Asia, and sub-Saharan Africa. The disease is endemic in South Africa; however, a unique control area has been set up in the Western Cape where increased surveillance and control measures have been put in place. A deterministic metapopulation model was developed to explore if an outbreak might occur, and how it might develop, if a latently infected horse was to be imported into the control area, by varying the geographical location and months of import. To do this, a previously published ordinary differential equation model was developed with a metapopulation approach and included a vaccinated horse population. Outbreak length, time to peak infection, number of infected horses at the peak, number of horses overall affected (recovered or dead), re-emergence, and Rv (the basic reproduction number in the presence of vaccination) were recorded and displayed using GIS mapping. The model predictions were compared to previous outbreak data to ensure validity. The warmer months (November to March) had longer outbreaks than the colder months (May to September), took more time to reach the peak, and had a greater total outbreak size with more horses infected at the peak. Rv appeared to be a poor predictor of outbreak dynamics for this simulation. A sensitivity analysis indicated that control measures such as vaccination and vector control are potentially effective to manage the spread of an outbreak, and shortening the vaccination window to July to September may reduce the risk of vaccine-associated outbreaks.


Asunto(s)
Enfermedad Equina Africana , Animales , Caballos , Sudáfrica/epidemiología , Enfermedad Equina Africana/epidemiología , Enfermedad Equina Africana/prevención & control , Brotes de Enfermedades/veterinaria , Número Básico de Reproducción , Simulación por Computador
3.
Emerg Infect Dis ; 29(1): 164-169, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36573591

RESUMEN

We collected >40,000 mosquitoes from 5 provinces in South Africa during 2011-2018 and screened for zoonotic flaviviruses. We detected West Nile virus in mosquitoes from conservation and periurban sites and potential new mosquito vectors; Banzi virus was rare. Our results suggest flavivirus transmission risks are increasing in South Africa.


Asunto(s)
Culex , Culicidae , Flavivirus , Fiebre del Nilo Occidental , Virus del Nilo Occidental , Animales , Sudáfrica/epidemiología , Flavivirus/genética , Virus del Nilo Occidental/genética , Mosquitos Vectores
4.
PLoS Comput Biol ; 18(9): e1009540, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36121847

RESUMEN

Mathematical models of vector-borne infections, including malaria, often assume age-independent mortality rates of vectors, despite evidence that many insects senesce. In this study we present survival data on insecticide-resistant Anopheles gambiae s.l. from experiments in Côte d'Ivoire. We fit a constant mortality function and two age-dependent functions (logistic and Gompertz) to the data from mosquitoes exposed (treated) and not exposed (control) to insecticide-treated nets (ITNs), to establish biologically realistic survival functions. This enables us to explore the effects of insecticide exposure on mosquito mortality rates, and the extent to which insecticide resistance might impact the effectiveness of ITNs. We investigate this by calculating the expected number of infectious bites a mosquito will take in its lifetime, and by extension the vectorial capacity. Our results show that the predicted vectorial capacity is substantially lower in mosquitoes exposed to ITNs, despite the mosquitoes in the experiment being highly insecticide-resistant. The more realistic age-dependent functions provide a better fit to the experimental data compared to a constant mortality function and, hence, influence the predicted impact of ITNs on malaria transmission potential. In models with age-independent mortality, there is a great reduction for the vectorial capacity under exposure compared to no exposure. However, the two age-dependent functions predicted an even larger reduction due to exposure, highlighting the impact of incorporating age in the mortality rates. These results further show that multiple exposures to ITNs had a considerable effect on the vectorial capacity. Overall, the study highlights the importance of including age dependency in mathematical models of vector-borne disease transmission and in fully understanding the impact of interventions.


Asunto(s)
Anopheles , Insecticidas , Malaria , Animales , Resistencia a los Insecticidas , Insecticidas/farmacología , Malaria/prevención & control , Control de Mosquitos/métodos , Mosquitos Vectores
5.
PLoS Comput Biol ; 17(1): e1008619, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33481773

RESUMEN

Efforts to suppress transmission of SARS-CoV-2 in the UK have seen non-pharmaceutical interventions being invoked. The most severe measures to date include all restaurants, pubs and cafes being ordered to close on 20th March, followed by a "stay at home" order on the 23rd March and the closure of all non-essential retail outlets for an indefinite period. Government agencies are presently analysing how best to develop an exit strategy from these measures and to determine how the epidemic may progress once measures are lifted. Mathematical models are currently providing short and long term forecasts regarding the future course of the COVID-19 outbreak in the UK to support evidence-based policymaking. We present a deterministic, age-structured transmission model that uses real-time data on confirmed cases requiring hospital care and mortality to provide up-to-date predictions on epidemic spread in ten regions of the UK. The model captures a range of age-dependent heterogeneities, reduced transmission from asymptomatic infections and produces a good fit to the key epidemic features over time. We simulated a suite of scenarios to assess the impact of differing approaches to relaxing social distancing measures from 7th May 2020 on the estimated number of patients requiring inpatient and critical care treatment, and deaths. With regard to future epidemic outcomes, we investigated the impact of reducing compliance, ongoing shielding of elder age groups, reapplying stringent social distancing measures using region based triggers and the role of asymptomatic transmission. We find that significant relaxation of social distancing measures from 7th May onwards can lead to a rapid resurgence of COVID-19 disease and the health system being quickly overwhelmed by a sizeable, second epidemic wave. In all considered age-shielding based strategies, we projected serious demand on critical care resources during the course of the pandemic. The reintroduction and release of strict measures on a regional basis, based on ICU bed occupancy, results in a long epidemic tail, until the second half of 2021, but ensures that the health service is protected by reintroducing social distancing measures for all individuals in a region when required. Our work confirms the effectiveness of stringent non-pharmaceutical measures in March 2020 to suppress the epidemic. It also provides strong evidence to support the need for a cautious, measured approach to relaxation of lockdown measures, to protect the most vulnerable members of society and support the health service through subduing demand on hospital beds, in particular bed occupancy in intensive care units.


Asunto(s)
COVID-19 , Modelos Estadísticos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/epidemiología , COVID-19/prevención & control , COVID-19/transmisión , Niño , Predicción , Humanos , Persona de Mediana Edad , Pandemias , Años de Vida Ajustados por Calidad de Vida , SARS-CoV-2 , Reino Unido/epidemiología , Adulto Joven
6.
Proc Natl Acad Sci U S A ; 116(29): 14645-14650, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31262813

RESUMEN

Novel parasites can have wide-ranging impacts, not only on host populations, but also on the resident parasite community. Historically, impacts of novel parasites have been assessed by examining pairwise interactions between parasite species. However, parasite communities are complex networks of interacting species. Here we used multivariate taxonomic and trait-based approaches to determine how parasite community composition changed when African buffalo (Syncerus caffer) acquired an emerging disease, bovine tuberculosis (BTB). Both taxonomic and functional parasite richness increased significantly in animals that acquired BTB than in those that did not. Thus, the presence of BTB seems to catalyze extraordinary shifts in community composition. There were no differences in overall parasite taxonomic composition between infected and uninfected individuals, however. The trait-based analysis revealed an increase in direct-transmitted, quickly replicating parasites following BTB infection. This study demonstrates that trait-based approaches provide insight into parasite community dynamics in the context of emerging infections.


Asunto(s)
Búfalos/parasitología , Enfermedades Transmisibles Emergentes/veterinaria , Interacciones Huésped-Parásitos/genética , Parásitos/genética , Tuberculosis Bovina/inmunología , Animales , Búfalos/inmunología , Búfalos/microbiología , Bovinos , Enfermedades Transmisibles Emergentes/inmunología , Enfermedades Transmisibles Emergentes/microbiología , Femenino , Interacciones Huésped-Parásitos/inmunología , Estudios Longitudinales , Mycobacterium bovis/inmunología , Parásitos/inmunología , Parásitos/aislamiento & purificación , Sudáfrica , Tuberculosis Bovina/microbiología
7.
Emerg Infect Dis ; 27(12): 3142-3146, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34808093

RESUMEN

Shuni virus is associated with neurologic and febrile illness in animals and humans. To determine potential vectors, we collected mosquitoes in South Africa and detected the virus in species of the genera Mansonia, Culex, Aedes, and Anopheles. These mosquitoes may be associated with Shuni virus outbreaks in Africa and emergence in other regions.


Asunto(s)
Aedes , Culex , Orthobunyavirus , Animales , Humanos , Mosquitos Vectores , Sudáfrica/epidemiología
8.
Ecol Appl ; 31(2): e2245, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33098602

RESUMEN

Emerging diseases of wildlife origin are increasingly spilling over into humans and domestic animals. Surveillance and risk assessments for transmission between these populations are informed by a mechanistic understanding of the pathogens in wildlife reservoirs. For avian influenza viruses (AIV), much observational and experimental work in wildlife has been conducted at local scales, yet fully understanding their spread and distribution requires assessing the mechanisms acting at both local, (e.g., intrinsic epidemic dynamics), and continental scales, (e.g., long-distance migration). Here, we combined a large, continental-scale data set on low pathogenic, Type A AIV in the United States with a novel network-based application of bird banding/recovery data to investigate the migration-based drivers of AIV and their relative importance compared to well-characterized local drivers (e.g., demography, environmental persistence). We compared among regression models reflecting hypothesized ecological processes and evaluated their ability to predict AIV in space and time using within and out-of-sample validation. We found that predictors of AIV were associated with multiple mechanisms at local and continental scales. Hypotheses characterizing local epidemic dynamics were strongly supported, with age, the age-specific aggregation of migratory birds in an area and temperature being the best predictors of infection. Hypotheses defining larger, network-based features of the migration processes, such as clustering or between-cluster mixing explained less variation but were also supported. Therefore, our results support a role for local processes in driving the continental distribution of AIV.


Asunto(s)
Virus de la Influenza A , Gripe Aviar , Animales , Aves , Demografía , Humanos , Gripe Aviar/epidemiología , Temperatura , Estados Unidos
9.
Proc Natl Acad Sci U S A ; 115(29): 7545-7550, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29967175

RESUMEN

Coinfecting parasites and pathogens remain a leading challenge for global public health due to their consequences for individual-level infection risk and disease progression. However, a clear understanding of the population-level consequences of coinfection is lacking. Here, we constructed a model that includes three individual-level effects of coinfection: mortality, fecundity, and transmission. We used the model to investigate how these individual-level consequences of coinfection scale up to produce population-level infection patterns. To parameterize this model, we conducted a 4-y cohort study in African buffalo to estimate the individual-level effects of coinfection with two bacterial pathogens, bovine tuberculosis (bTB) and brucellosis, across a range of demographic and environmental contexts. At the individual level, our empirical results identified bTB as a risk factor for acquiring brucellosis, but we found no association between brucellosis and the risk of acquiring bTB. Both infections were associated with reductions in survival and neither infection was associated with reductions in fecundity. The model reproduced coinfection patterns in the data and predicted opposite impacts of coinfection at individual and population scales: Whereas bTB facilitated brucellosis infection at the individual level, our model predicted the presence of brucellosis to have a strong negative impact on bTB at the population level. In modeled populations where brucellosis was present, the endemic prevalence and basic reproduction number ([Formula: see text]) of bTB were lower than in populations without brucellosis. Therefore, these results provide a data-driven example of competition between coinfecting pathogens that occurs when one pathogen facilitates secondary infections at the individual level.


Asunto(s)
Brucelosis , Búfalos/microbiología , Coinfección , Modelos Biológicos , Tuberculosis Bovina , Animales , Brucelosis/epidemiología , Brucelosis/microbiología , Brucelosis/transmisión , Brucelosis/veterinaria , Bovinos , Coinfección/epidemiología , Coinfección/microbiología , Coinfección/transmisión , Coinfección/veterinaria , Femenino , Tuberculosis Bovina/epidemiología , Tuberculosis Bovina/microbiología , Tuberculosis Bovina/transmisión
10.
J Anim Ecol ; 85(4): 1025-34, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27084785

RESUMEN

Experimental studies in laboratory settings have demonstrated a critical role of parasite interactions in shaping parasite communities. The sum of these interactions can produce diverse effects on individual hosts as well as influence disease emergence and persistence at the population level. A predictive framework for the effects of parasite interactions in the wild remains elusive, largely because of limited longitudinal or experimental data on parasite communities of free-ranging hosts. This 4-year study followed a community of haemoparasites in free-ranging African buffalo (Syncerus caffer). We detected infection by 11 haemoparasite species using PCR-based diagnostic techniques, and analyzed drivers of infection patterns using generalized linear mixed models to understand the role of host characteristics and season on infection likelihood. We tested for (i) effects of co-infection by other haemoparasites (within guild) and (ii) effects of parasites infecting different tissue types (across guild). We found that within guild co-infections were the strongest predictors of haemoparasite infections in the buffalo; but that seasonal and host characteristics also had important effects. In contrast, the evidence for across-guild effects of parasites utilizing different tissue on haemoparasite infection was weak. These results provide a nuanced view of the role of co-infections in determining haemoparasite infection patterns in free living mammalian hosts. Our findings suggest a role for interactions among parasites infecting a single tissue type in determining infection patterns.


Asunto(s)
Búfalos , Coinfección/veterinaria , Theileriosis/inmunología , Animales , Sangre/microbiología , Sangre/parasitología , Coinfección/inmunología , Coinfección/microbiología , Coinfección/parasitología , Femenino , Interacciones Huésped-Parásitos , Estudios Longitudinales , Sudáfrica , Theileria/fisiología , Theileriosis/parasitología
11.
J Anim Ecol ; 84(4): 999-1009, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25714466

RESUMEN

Chronic infections may have negative impacts on wildlife populations, yet their effects are difficult to detect in the absence of long-term population monitoring. Brucella abortus, the bacteria responsible for bovine brucellosis, causes chronic infections and abortions in wild and domestic ungulates, but its impact on population dynamics is not well understood. We report infection patterns and fitness correlates of bovine brucellosis in African buffalo based on (1) 7 years of cross-sectional disease surveys and (2) a 4-year longitudinal study in Kruger National Park (KNP), South Africa. We then used a matrix population model to translate these observed patterns into predicted population-level effects. Annual brucellosis seroprevalence ranged from 8·7% (95% CI = 1·8-15·6) to 47·6% (95% CI = 35·1-60·1) increased with age until adulthood (>6) and varied by location within KNP. Animals were on average in worse condition after testing positive for brucellosis (F = -5·074, P < 0·0001), and infection was associated with a 2·0 (95% CI = 1·1-3·7) fold increase in mortality (χ(2)  = 2·039, P = 0·036). Buffalo in low body condition were associated with lower reproductive success (F = 2·683, P = 0·034), but there was no association between brucellosis and pregnancy or being observed with a calf. For the range of body condition scores observed in the population, the model-predicted growth rate was λ = 1·11 (95% CI = 1·02-1·21) in herds without brucellosis and λ = 1·00 (95% CI = 0·85-1·16) when brucellosis seroprevalence was 30%. Our results suggest that brucellosis infection can potentially result in reduced population growth rates, but because these effects varied with demographic and environmental conditions, they may remain unseen without intensive, longitudinal monitoring.


Asunto(s)
Brucella abortus/patogenicidad , Brucelosis/veterinaria , Búfalos/microbiología , Fertilidad , Animales , Brucelosis/epidemiología , Brucelosis/microbiología , Estudios Transversales , Femenino , Estudios Longitudinales , Masculino , Dinámica Poblacional , Embarazo , Estudios Seroepidemiológicos , Sudáfrica , Análisis de Supervivencia
12.
Parasit Vectors ; 17(1): 354, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39169433

RESUMEN

BACKGROUND: Culicoides biting midges exhibit a global spatial distribution and are the main vectors of several viruses of veterinary importance, including bluetongue (BT) and African horse sickness (AHS). Many environmental and anthropological factors contribute to their ability to live in a variety of habitats, which have the potential to change over the years as the climate changes. Therefore, as new habitats emerge, the risk for new introductions of these diseases of interest to occur increases. The aim of this study was to model distributions for two primary vectors for BT and AHS (Culicoides imicola and Culicoides bolitinos) using random forest (RF) machine learning and explore the relative importance of environmental and anthropological factors in a region of South Africa with frequent AHS and BT outbreaks. METHODS: Culicoides capture data were collected between 1996 and 2022 across 171 different capture locations in the Western Cape. Predictor variables included climate-related variables (temperature, precipitation, humidity), environment-related variables (normalised difference vegetation index-NDVI, soil moisture) and farm-related variables (livestock densities). Random forest (RF) models were developed to explore the spatial distributions of C. imicola, C. bolitinos and a merged species map, where both competent vectors were combined. The maps were then compared to interpolation maps using the same capture data as well as historical locations of BT and AHS outbreaks. RESULTS: Overall, the RF models performed well with 75.02%, 61.6% and 74.01% variance explained for C. imicola, C. bolitinos and merged species models respectively. Cattle density was the most important predictor for C. imicola and water vapour pressure the most important for C. bolitinos. Compared to interpolation maps, the RF models had higher predictive power throughout most of the year when species were modelled individually; however, when merged, the interpolation maps performed better in all seasons except winter. Finally, midge densities did not show any conclusive correlation with BT or AHS outbreaks. CONCLUSION: This study yielded novel insight into the spatial abundance and drivers of abundance of competent vectors of BT and AHS. It also provided valuable data to inform mathematical models exploring disease outbreaks so that Culicoides-transmitted diseases in South Africa can be further analysed.


Asunto(s)
Enfermedad Equina Africana , Lengua Azul , Ceratopogonidae , Insectos Vectores , Aprendizaje Automático , Animales , Bovinos , Enfermedad Equina Africana/epidemiología , Enfermedad Equina Africana/transmisión , Enfermedad Equina Africana/virología , Lengua Azul/epidemiología , Lengua Azul/transmisión , Lengua Azul/virología , Virus de la Lengua Azul , Ceratopogonidae/virología , Clima , Brotes de Enfermedades , Ecosistema , Caballos , Insectos Vectores/virología , Bosques Aleatorios , Sudáfrica/epidemiología , Ovinos
13.
Prev Vet Med ; 232: 106328, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39191049

RESUMEN

Bluetongue virus (BT) is a vector-borne virus that causes a disease, called bluetongue, which results in significant economic loss and morbidity in sheep, cattle, goats and wild ungulates across all continents of the world except Antarctica. Despite the geographical breadth of its impact, most BT epidemiological models are informed by parameters derived from the 2006-2009 BTV-8 European outbreak. The aim of this study was to develop a highly adaptable model for BT which could be used elsewhere in the world, as well as to identify the parameters which most influence outbreak dynamics, so that policy makers can be properly informed with the most current information to aid in disease planning. To provide a framework for future outbreak modelling and an updated parameterisation that reflects natural variation in infections, a newly developed and parameterised two-host, two-vector species ordinary differential equation model was formulated and analysed. The model was designed to be adaptable to be implemented in any region of the world and able to model both epidemic and endemic scenarios. It was parameterised using a systematic literature review of host-to-vector and vector-to-host transmission rates, host latent periods, host infectious periods, and vaccine protection factors. The model was demonstrated using the updated parameters, with South Africa as a setting based on the Western Cape's known cattle and sheep populations, local environmental parameters, and Culicoides spp. presence data. The sensitivity analysis identified that the duration of the infectious period for sheep and cows had the greatest impact on the outbreak length and number of animals infected at the peak of the outbreak. Transmission rates from cows and sheep to C. imicola midges greatly influenced the day on which the peak of the outbreak occurred, along with the duration of incubation period, and infectious period for cows. Finally, the protection factor of the vaccine had the greatest influence on the total number of animals infected. This knowledge could aid in the development of control measures. Due to gradual climate and anthropological change resulting in alterations in vector habitat suitability, BT outbreaks are likely to continue to increase in range and frequency. Therefore, this research provides an updated BT modelling framework for future outbreaks around the world to explore transmission, outbreak dynamics and control measures.

14.
Epidemics ; 42: 100668, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36696830

RESUMEN

Transboundary livestock diseases are a high priority for policy makers because of the serious economic burdens associated with infection. In order to make well informed preparedness and response plans, policy makers often utilize mathematical models to understand possible outcomes of different control strategies and outbreak scenarios. Many of these models focus on the transmission between herds and the overall trajectory of the outbreak. While the course of infection within herds has not been the focus of the majority of models, a thorough understanding of within-herd dynamics can provide valuable insight into a disease system by providing information on herd-level biological properties of the infection, which can be used to inform decision making in both endemic and outbreak settings and to inform larger between-herd models. In this study, we develop three stochastic simulation models to study within-herd foot and mouth disease dynamics and the implications of different empirical data-based assumptions about the timing of the onset of infectiousness and clinical signs. We also study the influence of herd size and the proportion of the herd that is initially infected on the outcome of the infection. We find that increasing herd size increases the duration of infectiousness and that the size of the herd plays a more significant role in determining this duration than the number of initially infected cattle in that herd. We also find that the assumptions made regarding the onset of infectiousness and clinical signs, which are based on contradictory empirical findings, can result in the predictions about when infection would be detectable differing by several days. Therefore, the disease progression used to characterize the course of infection in a single bovine host could have significant implications for determining when herds can be detected and subsequently controlled; the timing of which could influence the overall predicted trajectory of outbreaks.


Asunto(s)
Enfermedades de los Bovinos , Virus de la Fiebre Aftosa , Fiebre Aftosa , Animales , Bovinos , Fiebre Aftosa/epidemiología , Ganado , Enfermedades de los Bovinos/epidemiología , Brotes de Enfermedades/prevención & control
15.
Ecol Evol ; 13(8): e10447, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37621318

RESUMEN

Many infectious pathogens are shared through social interactions, and examining host connectivity has offered valuable insights for understanding patterns of pathogen transmission across wildlife species. African buffalo are social ungulates and important reservoirs of directly-transmitted pathogens that impact numerous wildlife and livestock species. Here, we analyzed African buffalo social networks to quantify variation in close contacts, examined drivers of contact heterogeneity, and investigated how the observed contact patterns affect pathogen invasion likelihoods for a wild social ungulate. We collected continuous association data using proximity collars and sampled host traits approximately every 2 months during a 15-month study period in Kruger National Park, South Africa. Although the observed herd was well connected, with most individuals contacting each other during each bimonthly interval, our analyses revealed striking heterogeneity in close-contact associations among herd members. Network analysis showed that individual connectivity was stable over time and that individual age, sex, reproductive status, and pairwise genetic relatedness were important predictors of buffalo connectivity. Calves were the most connected members of the herd, and adult males were the least connected. These findings highlight the role susceptible calves may play in the transmission of pathogens within the herd. We also demonstrate that, at time scales relevant to infectious pathogens found in nature, the observed level of connectivity affects pathogen invasion likelihoods for a wide range of infectious periods and transmissibilities. Ultimately, our study identifies key predictors of social connectivity in a social ungulate and illustrates how contact heterogeneity, even within a highly connected herd, can shape pathogen invasion likelihoods.

16.
Viruses ; 15(2)2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36851627

RESUMEN

The prevalence and distribution of African alphaviruses such as chikungunya have increased in recent years. Therefore, a better understanding of the local distribution of alphaviruses in vectors across the African continent is important. Here, entomological surveillance was performed from 2014 to 2018 at selected sites in north-eastern parts of South Africa where alphaviruses have been identified during outbreaks in humans and animals in the past. Mosquitoes were collected using a net, CDC-light, and BG-traps. An alphavirus genus-specific nested RT-PCR was used for screening, and positive pools were confirmed by sequencing and phylogenetic analysis. We collected 64,603 mosquitoes from 11 genera, of which 39,035 females were tested. Overall, 1462 mosquito pools were tested, of which 21 were positive for alphaviruses. Sindbis (61.9%, N = 13) and Middelburg (28.6%, N = 6) viruses were the most prevalent. Ndumu virus was detected in two pools (9.5%, N = 2). No chikungunya positive pools were identified. Arboviral activity was concentrated in peri-urban, rural, and conservation areas. A range of Culicidae species, including Culex univittatus, Cx. pipiens s.l., Aedes durbanensis, and the Ae. dentatus group, were identified as potential vectors. These findings confirm the active circulation and distribution of alphaviruses in regions where human or animal infections were identified in South Africa.


Asunto(s)
Aedes , Alphavirus , Fiebre Chikungunya , Animales , Femenino , Humanos , Alphavirus/genética , Filogenia , Sudáfrica/epidemiología , Mosquitos Vectores
17.
Transbound Emerg Dis ; 69(5): 2712-2726, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34936219

RESUMEN

Foot-and-mouth disease (FMD) is a virulent and economically important disease of livestock, still endemic in many areas of Asia and sub-Saharan Africa. Transmission from persistently infected livestock, also known as carriers, has been proposed as a mechanism to support the persistence of FMD in endemic regions. However, whether carrier livestock can infect susceptible animals is controversial; recovered virus is infectious and there are claims of field transmission, but it remains undemonstrated experimentally. Alternate hypotheses for persistence include the movement of livestock within and between regions, and fomite contamination of the environment. Using a stochastic compartmental ordinary differential equation (ODE) model, we investigate the minimum rates of carrier transmission necessary to contribute to the maintenance of FMD in a region, and compare this to the alternate mechanism of persistence through cattle shipments. We find that carrier transmission can theoretically support persistence even at transmission rates much lower than the highest realistic rates previously proposed, and that the parameters with the most effect on the feasibility of carrier-mediated persistence are the average duration of both the carrier phase and natural immunity. However, shipment-mediated persistence remains a viable alternate mechanism for persistence without carrier transmission.


Asunto(s)
Enfermedades de los Bovinos , Virus de la Fiebre Aftosa , Fiebre Aftosa , Animales , Portador Sano/veterinaria , Bovinos , Brotes de Enfermedades/veterinaria , Ganado
18.
Viruses ; 13(11)2021 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-34834955

RESUMEN

Mosquitoes in the Aedes and Culex genera are considered the main vectors of pathogenic flaviviruses worldwide. Entomological surveillance using universal flavivirus sets of primers in mosquitoes can detect not only pathogenic viruses but also insect-specific ones. It is hypothesized that insect-specific flaviviruses, which naturally infect these mosquitoes, may influence their vector competence for zoonotic arboviruses. Here, entomological surveillance was performed between January 2014 and May 2018 in five different provinces in the northeastern parts of South Africa, with the aim of identifying circulating flaviviruses. Mosquitoes were sampled using different carbon dioxide trap types. Overall, 64,603 adult mosquitoes were collected, which were screened by RT-PCR and sequencing. In total, 17 pools were found positive for insect-specific Flaviviruses in the mosquito genera Aedes (12/17, 70.59%) and Anopheles (5/17, 29.41%). No insect-specific viruses were detected in Culex species. Cell-fusing agent viruses were detected in Aedes aegypti and Aedes caballus. A range of anopheline mosquitoes, including Anopheles coustani, An. squamosus and An. maculipalpis, were positive for Culex flavivirus-like and Anopheles flaviviruses. These results confirm the presence of insect-specific flaviviruses in mosquito populations in South Africa, expands their geographical range and indicates potential mosquito species as vector species.


Asunto(s)
Culicidae/virología , Flavivirus/clasificación , Flavivirus/aislamiento & purificación , Mosquitos Vectores/virología , Aedes/virología , Animales , Anopheles/virología , Arbovirus/clasificación , Arbovirus/genética , Arbovirus/aislamiento & purificación , Culex/virología , Flavivirus/genética , Virus de Insectos/aislamiento & purificación , Filogenia , Sudáfrica
19.
Philos Trans R Soc Lond B Biol Sci ; 376(1829): 20200261, 2021 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-34053259

RESUMEN

By mid-May 2020, cases of COVID-19 in the UK had been declining for over a month; a multi-phase emergence from lockdown was planned, including a scheduled partial reopening of schools on 1 June 2020. Although evidence suggests that children generally display mild symptoms, the size of the school-age population means the total impact of reopening schools is unclear. Here, we present work from mid-May 2020 that focused on the imminent opening of schools and consider what these results imply for future policy. We compared eight strategies for reopening primary and secondary schools in England. Modifying a transmission model fitted to UK SARS-CoV-2 data, we assessed how reopening schools affects contact patterns, anticipated secondary infections and the relative change in the reproduction number, R. We determined the associated public health impact and its sensitivity to changes in social distancing within the wider community. We predicted that reopening schools with half-sized classes or focused on younger children was unlikely to push R above one. Older children generally have more social contacts, so reopening secondary schools results in more cases than reopening primary schools, while reopening both could have pushed R above one in some regions. Reductions in community social distancing were found to outweigh and exacerbate any impacts of reopening. In particular, opening schools when the reproduction number R is already above one generates the largest increase in cases. Our work indicates that while any school reopening will result in increased mixing and infection amongst children and the wider population, reopening schools alone in June 2020 was unlikely to push R above one. Ultimately, reopening decisions are a difficult trade-off between epidemiological consequences and the emotional, educational and developmental needs of children. Into the future, there are difficult questions about what controls can be instigated such that schools can remain open if cases increase. This article is part of the theme issue 'Modelling that shaped the early COVID-19 pandemic response in the UK'.


Asunto(s)
COVID-19/epidemiología , Control de Enfermedades Transmisibles , Modelos Teóricos , Pandemias , Adolescente , Adulto , COVID-19/virología , Niño , Preescolar , Inglaterra/epidemiología , Femenino , Humanos , Masculino , Distanciamiento Físico , SARS-CoV-2/patogenicidad , Instituciones Académicas/tendencias , Adulto Joven
20.
Science ; 374(6563): 104-109, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34591637

RESUMEN

Extremely contagious pathogens are a global biosecurity threat because of their high burden of morbidity and mortality, as well as their capacity for fast-moving epidemics that are difficult to quell. Understanding the mechanisms enabling persistence of highly transmissible pathogens in host populations is thus a central problem in disease ecology. Through a combination of experimental and theoretical approaches, we investigated how highly contagious foot-and-mouth disease viruses persist in the African buffalo, which serves as their wildlife reservoir. We found that viral persistence through transmission among acutely infected hosts alone is unlikely. However, the inclusion of occasional transmission from persistently infected carriers reliably rescues the most infectious viral strain from fade-out. Additional mechanisms such as antigenic shift, loss of immunity, or spillover among host populations may be required for persistence of less transmissible strains.


Asunto(s)
Búfalos/virología , Enfermedades Endémicas/veterinaria , Virus de la Fiebre Aftosa/patogenicidad , Fiebre Aftosa/transmisión , Fiebre Aftosa/virología , Animales , Virus de la Fiebre Aftosa/aislamiento & purificación , Población , Zoonosis/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA