Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Front Pharmacol ; 13: 1024830, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36386162

RESUMEN

The herbo-mineral formulation, Divya-Swasari-Vati (DSV), is a well-known Ayurvedic medication for respiratory ailments. In a recent pre-clinical study, DSV rescued humanized zebrafish from SARS-CoV-2 S-protein-induced pathologies. This merited for an independent evaluation of DSV as a SARS-CoV-2 entry inhibitor in the human host cell and its effectiveness in ameliorating associated cytokine production. The ELISA-based protein-protein interaction study showed that DSV inhibited the interactions of recombinant human ACE 2 with three different variants of S proteins, namely, Smut 1 (the first reported variant), Smut 2 (W436R variant) and Smut 3 (D614G variant). Entry of recombinant vesicular stomatitis SARS-CoV-2 (VSVppSARS-2S) pseudovirus, having firefly luciferase and EGFP reporters, was assessed through luciferase assay and fluorescent microscopy. DSV exhibited dose-dependent inhibition of VSVppSARS-2S pseudovirus entry into human lung epithelial A549 cells and also suppressed elevated levels of secreted pro-inflammatory cytokines such as interleukin-6 (IL-6), interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α) induced by viral infection mimicking Poly I:C-, S-protein- and VSVppSARS-2S pseudovirus. In human immune cells, DSV also moderated TNF-α-mediated NF-κB induction, in a dose-dependent manner. The observed anti-viral effect of DSV against SARS-CoV-2 is attributable to the presence of different metabolites Summarily, the observations from this study biochemically demonstrated that DSV interfered with the interaction between SARS-CoV-2 S-protein and human ACE 2 receptor which consequently, inhibited viral entry into the host cells and concomitant induction of inflammatory response.

2.
J Med Chem ; 60(9): 3913-3932, 2017 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-28399372

RESUMEN

Drug efflux mechanisms interact synergistically with the outer membrane permeability barrier of Gram-negative bacteria, leading to intrinsic resistance that presents a major challenge for antibiotic drug development. Efflux pump inhibitors (EPIs) which block the efflux of antibiotics synergize antibiotics, but the clinical development of EPI/antibiotic combination therapy to treat multidrug-resistant (MDR) Gram-negative infections has been challenging. This is in part caused by the inefficiency of current EPIs to penetrate the outer membrane and resist efflux. We demonstrate that conjugation of a tobramycin (TOB) vector to EPIs like NMP, paroxetine, or DBP enhances synergy and efficacy of EPIs in combination with tetracycline antibiotics against MDR Gram-negative bacteria including Pseudomonas aeruginosa. Besides potentiating tetracycline antibiotics, TOB-EPI conjugates can also suppress resistance development to the tetracycline antibiotic minocycline, thereby providing a strategy to develop more effective adjuvants to rescue tetracycline antibiotics from resistance in MDR Gram-negative bacteria.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Proteínas de Transporte de Membrana/metabolismo , Tobramicina/farmacología , Bacterias Grampositivas/efectos de los fármacos
3.
J Med Chem ; 60(9): 3684-3702, 2017 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-28409644

RESUMEN

Chromosomally encoded low membrane permeability and highly efficient efflux systems are major mechanisms by which Pseudomonas aeruginosa evades antibiotic actions. Our previous reports have shown that amphiphilic tobramycin-fluoroquinolone hybrids can enhance efficacy of fluoroquinolone antibiotics against multidrug-resistant (MDR) P. aeruginosa isolates. Herein, we report on a novel class of tobramycin-lysine conjugates containing an optimized amphiphilic tobramycin-C12 tether that sensitize Gram-negative bacteria to legacy antibiotics. Combination studies indicate the ability of these conjugates to synergize rifampicin and minocycline against MDR and extensively drug resistant (XDR) P. aeruginosa isolates and enhance efficacy of both antibiotics in the Galleria mellonella larvae in vivo infection model. Mode of action studies indicate that the amphiphilic tobramycin-lysine adjuvants enhance outer membrane cell penetration and affect the proton motive force, which energizes efflux pumps. Overall, this study provides a strategy for generating effective antibiotic adjuvants that overcome resistance of rifampicin and minocycline in MDR and XDR Gram-negative bacteria including P. aeruginosa.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Lisina/química , Minociclina/farmacología , Rifampin/farmacología , Tobramicina/farmacología , Antibacterianos/química , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Hemólisis/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Modelos Biológicos , Tobramicina/química
4.
J Med Chem ; 59(18): 8441-55, 2016 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-27524179

RESUMEN

Therapeutic interventions to treat multidrug-resistant (MDR) Pseudomonas aeruginosa infections are severely limited and often require the use of colistin as drug of last resort. The major challenges impeding the development of novel antipseudomonal agents are the lack of cell penetration and extensive efflux. We have discovered a tobramycin-moxifloxacin hybrid core structure which enhances outer membrane permeability and reduces efflux by dissipating the proton motive force of the cytoplasmic membrane in P. aeruginosa. The optimized hybrid protects Galleria mellonella larvae from the lethal effects of MDR P. aeruginosa. Attempts to select for resistance over a period of 25 days resulted in a 2-fold increase in the minimal inhibitory concentration (MIC) for the hybrid, while moxifloxacin or tobramycin resulted in a 16- and 512-fold increase in MIC. Although the hybrid possesses potent activity against MDR, P. aeruginosa isolates the activity that can be synergized when used in combination with other classes of antibiotics.


Asunto(s)
Antibacterianos/farmacología , Fluoroquinolonas/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Tobramicina/farmacología , Antibacterianos/química , Farmacorresistencia Bacteriana Múltiple , Fluoroquinolonas/química , Humanos , Moxifloxacino , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/citología , Tobramicina/análogos & derivados
5.
Dalton Trans ; 44(9): 4123-32, 2015 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-25622931

RESUMEN

A pyridine-2-carbohydrazide functionalized conjugated fluorophoric Schiff base ligand (L1) specifically senses Al(3+) and Cd(2+) ions through significant changes in its absorption and emission spectral behavior, respectively, in physiological conditions. The spectral changes are in the visible region of the spectrum and thus facilitate naked eye detection. Apart from the visible changes, an in-field device application was demonstrated by sensing these ions in paper strips coated with L1. The crystal structure of the L1-Cd complex provided additional insight of the metal coordination attributes of L1. Interestingly, fluorescence microscopic studies demonstrated that the ligand L1 could also be used as an effective probe in imaging experiments for the detection of intracellular Cd(2+) ions in HeLa cells, without any toxicity to these model human cells.


Asunto(s)
Aluminio/análisis , Cadmio/análisis , Complejos de Coordinación/química , Hidrazinas/química , Piridinas/química , Aluminio/química , Aluminio/farmacología , Cadmio/química , Cadmio/farmacología , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación/farmacología , Cristalografía por Rayos X , Células HeLa , Humanos , Ligandos , Microscopía Fluorescente , Bases de Schiff/química
6.
J Mater Chem B ; 3(35): 7068-7078, 2015 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32262709

RESUMEN

The alarming rise in antibiotic-resistant pathogenic bacteria demands a prudent approach in the generation of therapeutic antibacterials. The present study illustrates the development of a potent amphiphilic bactericidal material tailored to leverage interactions with metal-reactive groups (MRGs) present in the bacterial cell surface envelope. Complexation of Zn(ii) with a neutral pyridine-based synthetic amphiphile (C1) generated the cationic C1-Zn, which exhibited manyfold higher membrane-directed bactericidal activity compared to the neutral C1, or the cationic amphiphile bearing two pyridinium head groups (C2). The relevance of MRGs in C1-Zn-bacteria interactions was validated by amphiphile-bacteria binding studies and metal protection assays performed with Mg(ii). C1-Zn retained its bactericidal activity even in simulated gastric fluid (SGF) and the enhanced membrane-directed bactericidal activity of C1-Zn could be garnered in adjuvant applications to increase the efficacy of the therapeutic antibiotic erythromycin. Given the relevance of Zn(ii) in S. aureus biofilm formation, the antibiofilm potential of the amphiphile C1 realized through Zn(ii) complexation could be demonstrated. The lack of resistance in target bacteria coupled with a favorable therapeutic index (IC50/MIC) and non-toxic nature hold significant implications for C1-Zn as a potential antibacterial therapeutic material.

7.
ACS Appl Mater Interfaces ; 6(18): 16384-94, 2014 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-25162678

RESUMEN

Annihilation of bacterial biofilms is challenging owing to their formidable resistance to therapeutic antibiotics and thus there is a constant demand for development of potent antibiofilm agents that can abolish established biofilms. In the present study, the activity of a dipyridinium-based cationic amphiphile (compound 1) against established bacterial biofilms and the subsequent development of a compound 1-loaded nanocarrier for potential antibiofilm therapy are highlighted. Solution-based assays and microscopic analysis revealed the antagonistic effect of compound 1 on biofilms formed by Staphylococcus aureus MTCC 96 and Pseudomonas aeruginosa MTCC 2488. In combination studies, compound 1 could efficiently potentiate the action of tobramycin and gentamicin on P. aeruginosa and S. aureus biofilm, respectively. A human serum albumin (HSA)-based nanocarrier loaded with compound 1 was generated, which exhibited sustained release of compound 1 at physiological pH. The compound 1-loaded HSA nanocarrier (C1-HNC) displayed the signature membrane-directed activity of the amphiphile on target bacteria, efficiently eliminated established bacterial biofilms, and was observed to be nontoxic to a model human cell line. Interestingly, compound 1 as well as the amphiphile-loaded HSA nanocarrier could eradicate established S. aureus biofilm from the surface of a Foley's urinary catheter. On the basis of its biocompatibility and high antibiofilm activity, it is conceived that the amphiphile-loaded nanocarrier may hold potential in antibiofilm therapy.


Asunto(s)
Biopelículas/efectos de los fármacos , Portadores de Fármacos/química , Nanoestructuras/química , Compuestos de Piridinio/química , Antibacterianos/química , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Materiales Biocompatibles , Supervivencia Celular/efectos de los fármacos , Células HeLa , Humanos , Albúmina Sérica
9.
Chem Commun (Camb) ; 50(80): 11833-6, 2014 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-25145610

RESUMEN

An aggregation-induced emission (AIE) active probe (L) displayed TURN-ON fluorescence response toward Al(3+) under physiological conditions and in HeLa cells. The L-Al(3+) ensemble could subsequently facilitate tracking of interaction with DNA in solution.


Asunto(s)
Aluminio/análisis , ADN/análisis , Colorantes Fluorescentes/química , Cationes/análisis , Fluorescencia , Células HeLa , Humanos , Microscopía Fluorescente , Modelos Moleculares , Espectrometría de Fluorescencia
10.
J Mater Chem B ; 2(35): 5818-5827, 2014 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32262025

RESUMEN

Synthetic amphiphiles have emerged as potent bactericidal scaffolds owing to their high propensity to interact with bacterial cells and a membrane-directed mode of action, which is likely to overcome resistance development in pathogenic bacteria. In this study, we highlighted a membrane-acting quinolinium-based cationic amphiphile (compound 1) as an adjuvant for antibiotic-mediated eradication of pathogenic bacteria and demonstrated the generation of an amphiphile-loaded nanocarrier for potential antibacterial therapy. Treatment of Gram-negative pathogenic bacteria E. coli MTCC 433 and P. aeruginosa MTCC 2488 with 1 resulted in significant augmentation of the activity of erythromycin and a decrease in the minimum inhibitory concentration of the antibiotic. Interestingly, 1 promoted large-scale eradication of P. aeruginosa MTCC 2488 biofilm and could also enhance the anti-biofilm activity of tobramycin in combination. For potential therapeutic applications, a 1-loaded bovine serum albumin-based nanocarrier was developed, which exhibited sustained release of 1 both in physiological and acidic pH and the released amphiphile displayed antibacterial as well as anti-biofilm activities. Interestingly, the nanocarrier also displayed the signature membrane-directed activity of 1 against tested pathogenic bacteria. The high bactericidal and anti-biofilm activities in conjunction with a lack of cytotoxic effect on HT-29 human cell lines enhance the merit of the amphiphile-loaded nanocarrier as a potentially therapeutic antibacterial against clinically relevant drug-resistant pathogenic bacteria.

11.
Adv Healthc Mater ; 2(4): 599-606, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23184755

RESUMEN

The use of nanoscale materials as bactericidal agents represents a novel paradigm in the development of therapeutics against drug-resistant pathogenic bacteria. In this paper the antimicrobial activity of a water soluble (gold nanoparticle)-polythiophene (AuNP-PTh) composite against common bacterial pathogens is reported. The nanocomposite is broad-spectrum in its bactericidal activity and exhibits a membrane-directed mode of action on target pathogens. The therapeutic potency of AuNP-PTh is demonstrated by experiments which reveal that the nanocomposite can breach the outer membrane defense barrier of Gram-negative pathogens for subsequent killing by a hydrophobic antibiotic, inhibit the growth of model gastrointestinal pathogens in simulated gastric fluid, and significantly eradicate bacterial biofilms. The high bacterial selectivity and lack of cytotoxicity on human cells augers well for future therapeutic application of the nanocomposite against clinically relevant pathogenic bacteria.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Oro/química , Nanopartículas del Metal/química , Nanocompuestos/química , Polímeros/química , Tiofenos/química , Antibacterianos/farmacocinética , Supervivencia Celular/efectos de los fármacos , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacología , Eritromicina/química , Eritromicina/farmacocinética , Eritromicina/farmacología , Jugo Gástrico , Bacterias Gramnegativas/efectos de los fármacos , Células HT29 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Potenciales de la Membrana/efectos de los fármacos
12.
J Mater Chem B ; 1(20): 2612-2623, 2013 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32260949

RESUMEN

In this paper, we present a critical assessment of the therapeutic potential of low molecular weight pyridine-based synthetic amphiphiles based on structure-guided bactericidal activity and a rational evaluation of their cytotoxic potential. Fluorescence-based structure-function studies revealed that the amphiphiles were membrane-acting and displayed a hierarchical pattern of bactericidal activity, which could be correlated with their charge density and hydrophobicity. The membrane-targeting activity of the most potent cationic amphiphile (compound 6) was vindicated as it induced extensive membrane-disruption and dissipation of the transmembrane potential (ΔΨ) in pathogenic bacteria. At concentrations equivalent to the minimum inhibitory concentration (MIC) against the Gram-positive pathogen S. aureus MTCC 96, none of the amphiphiles exerted any cytotoxic effect on model human cell lines (HeLa, MCF-7 and HT-29). However, at elevated concentrations, a distinct gradation in the cytotoxic effect was manifested, which is probably accounted by the charge density and conformational flexibility of the amphiphiles. A viable therapeutic application of compound 6 is demonstrated in combinatorial assays, wherein the proclivity of the amphiphile to disrupt bacterial membranes at very low concentration is exploited to enhance the uptake and bactericidal efficacy of erythromycin against Gram-negative pathogenic bacteria.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA