Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Ther ; 20(11): 2153-67, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22990676

RESUMEN

Human embryonic stem cells (hESCs) and human-induced pluripotent stem cells (hiPSCs) have an endless self-renewal capacity and can theoretically differentiate into all types of lineages. They thus represent an unlimited source of cells for therapies of regenerative diseases, such as Duchenne muscular dystrophy (DMD), and for tissue repair in specific medical fields. However, at the moment, the low number of efficient specific lineage differentiation protocols compromises their use in regenerative medicine. We developed a two-step procedure to differentiate hESCs and dystrophic hiPSCs in myogenic cells. The first step was a culture in a myogenic medium and the second step an infection with an adenovirus expressing the myogenic master gene MyoD. Following infection, the cells expressed several myogenic markers and formed abundant multinucleated myotubes in vitro. When transplanted in the muscle of Rag/mdx mice, these cells participated in muscle regeneration by fusing very well with existing muscle fibers. Our findings provide an effective method that will permit to use hESCs or hiPSCs for preclinical studies in muscle repair.


Asunto(s)
Células Madre Embrionarias/fisiología , Células Madre Pluripotentes Inducidas/fisiología , Músculo Esquelético/fisiopatología , Distrofia Muscular de Duchenne/terapia , Mioblastos Esqueléticos/trasplante , Animales , Diferenciación Celular , Fusión Celular , Forma de la Célula , Células Cultivadas , Medios de Cultivo , Distrofina/metabolismo , Células Madre Embrionarias/trasplante , Humanos , Células Madre Pluripotentes Inducidas/trasplante , Lamina Tipo A/metabolismo , Ratones , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/patología , Distrofia Muscular de Duchenne/fisiopatología , Proteína MioD/genética , Proteína MioD/metabolismo , Mioblastos Esqueléticos/metabolismo , Mioblastos Esqueléticos/patología , Regeneración , Espectrina/metabolismo , Transfección
2.
Mol Ther ; 18(12): 2155-63, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20683444

RESUMEN

Duchenne muscular dystrophy (DMD) still needs effective treatments, and myoblast transplantation (MT) is considered as an approach to repair damaged skeletal muscles. DMD is due to the complete loss of dystrophin from muscles. The lack of link between the contracting apparatus and the extracellular matrix leads to frequent damage to the sarcolemma triggering muscle fiber necrosis. Laminins are major proteins in the extracellular matrix. Laminin-111 is normally present in skeletal and cardiac muscles in mice and humans but only during embryonic development. In this study, we showed that intramuscular injection of laminin-111 increased muscle strength and resistance in mdx mice. We also used laminin-111 as a coadjuvant in MT, and we showed this protein decreased considerably the repetitive cycles of degeneration, inflammatory reaction, and regeneration. Moreover, MT is significantly improved. To explain the improvement, we confirmed with the same myoblast cell batch that laminin-111 improves proliferation and drastically increases migration in vitro. These results are extremely important because DMD could be treated only by the injection of a recombinant protein, a simple and safe therapy to prevent loss of muscle function. Moreover, the improvement in MT would be significant to treat the muscles of DMD patients who are already weak.


Asunto(s)
Terapia Genética , Laminina/uso terapéutico , Distrofia Muscular de Duchenne/terapia , Animales , Proliferación Celular , Técnica del Anticuerpo Fluorescente , Humanos , Laminina/genética , Laminina/farmacología , Ratones , Ratones Endogámicos mdx , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Mioblastos/citología
3.
Mol Ther ; 17(6): 1064-72, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19352326

RESUMEN

Muscle disorders such as Duchenne muscular dystrophy (DMD) still need effective treatments, and mesenchymal stem cells (MSCs) may constitute an attractive cell therapy alternative because they are multipotent and accessible in adult tissues. We have previously shown that human multipotent adipose-derived stem (hMADS) cells were able to restore dystrophin expression in the mdx mouse. The goal of this work was to improve the myogenic potential of hMADS cells and assess the impact on muscle repair. Forced expression of MyoD in vitro strongly induced myogenic differentiation while the adipogenic differentiation was inhibited. Moreover, MyoD-expressing hMADS cells had the capacity to fuse with DMD myoblasts and to restore dystrophin expression. Importantly, transplantation of these modified hMADS cells into injured muscles of immunodepressed Rag2(-/-)gammaC(-/-) mice resulted in a substantial increase in the number of hMADS cell-derived fibers. Our approach combined the easy access of MSCs from adipose tissue, the highly efficient lentiviral transduction of these cells, and the specific improvement of myogenic differentiation through the forced expression of MyoD. Altogether our results highlight the capacity of modified hMADS cells to contribute to muscle repair and their potential to deliver a repairing gene to dystrophic muscles.


Asunto(s)
Tejido Adiposo/citología , Células Madre Multipotentes/metabolismo , Músculo Esquelético/citología , Proteína MioD/genética , Proteína MioD/metabolismo , Adipogénesis/genética , Adipogénesis/fisiología , Animales , Western Blotting , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Fusión Celular , Línea Celular , Células Cultivadas , Distrofina/metabolismo , Citometría de Flujo , Vectores Genéticos/genética , Humanos , Inmunohistoquímica , Lentivirus/genética , Masculino , Ratones , Ratones Endogámicos mdx , Células Madre Multipotentes/citología , Fibras Musculares Esqueléticas/citología , Músculo Esquelético/metabolismo , Proteína MioD/fisiología , Mioblastos/citología , Mioblastos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
4.
Int J Biochem Cell Biol ; 37(9): 1900-10, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15923133

RESUMEN

We have previously shown that calpain promotes myoblast fusion by acting on protein kinase C-alpha and the cytosolic phosphorylated form of MARCKS. In other cell types, various isoforms of calpain, PKC alpha and MARCKS were found associated with caveolae. These vesicular invaginations of the plasma membrane are essential for myoblast fusion and differentiation. We have isolated caveolae from myoblasts and studied the presence of calpain isoforms and their possible effects on signalling mediated by caveolae-associated PKC. Our results show that milli-calpain co-localizes with myoblast caveolae. Futhermore we provide evidence, using a calcium ionophore and a specific inhibitor of calpains (calpastatin peptide), that milli-calpain reduces the PKC alpha and MARCKS content in these structures. Purified milli-calpain causes the appearance of the active catalytic fragment of PKC alpha (PKM), without having an effect on MARCKS. Addition of phorbol myristate acetate, an activator of PKC, induces tranlocation of PKC alpha towards caveolae and results in a significant reduction of MARCKS associated with caveolae. This phenomenon is not observed when a PKC alpha inhibitor is added at the same time. We conclude that the presence of biologically active milli-calpain within myoblast caveolae induces, in a PKC alpha-dependent manner, MARCKS translocation towards the cytosol. Such a localised signalling event may be essential for myoblast fusion and differentiation.


Asunto(s)
Calpaína/metabolismo , Caveolas/metabolismo , Citosol/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Mioblastos/metabolismo , Proteína Quinasa C/metabolismo , Transducción de Señal , Animales , Carcinógenos/farmacología , Compartimento Celular , Fusión Celular , Ratones , Mioblastos/citología , Sustrato de la Proteína Quinasa C Rico en Alanina Miristoilada , Proteína Quinasa C-alfa , Acetato de Tetradecanoilforbol/farmacología
5.
Biochem J ; 382(Pt 3): 1015-23, 2004 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-15239673

RESUMEN

MARCKS (myristoylated alanine-rich C kinase substrate) is a major cytoskeletal protein substrate of PKC (protein kinase C) whose cellular functions are still unclear. However numerous studies have implicated MARCKS in the stabilization of cytoskeletal structures during cell differentiation. The present study was performed to investigate the potential role of Ca(2+)-dependent proteinases (calpains) during myogenesis via proteolysis of MARCKS. It was first demonstrated that MARCKS is a calpain substrate in vitro. Then, the subcellular expression of MARCKS was examined during the myogenesis process. Under such conditions, there was a significant decrease in MARCKS expression associated with the appearance of a 55 kDa proteolytic fragment at the time of intense fusion. The addition of calpastatin peptide, a specific calpain inhibitor, induced a significant decrease in the appearance of this fragment. Interestingly, MARCKS proteolysis was dependent of its phosphorylation by the conventional PKCalpha. Finally, ectopic expression of MARCKS significantly decreased the myoblast fusion process, while reduced expression of the protein with antisense oligonucleotides increased the fusion. Altogether, these data demonstrate that MARCKS proteolysis is necessary for the fusion of myoblasts and that cleavage of the protein by calpains is involved in this regulation.


Asunto(s)
Calpaína/metabolismo , Péptidos y Proteínas de Señalización Intracelular/fisiología , Proteínas de la Membrana/fisiología , Mioblastos/fisiología , Proteína Quinasa C/metabolismo , Animales , Fusión Celular , Línea Celular , Citoesqueleto/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Desarrollo de Músculos/fisiología , Sustrato de la Proteína Quinasa C Rico en Alanina Miristoilada , Proteína Quinasa C-alfa , Proteínas Recombinantes/metabolismo , Fracciones Subcelulares/metabolismo
6.
Int J Biochem Cell Biol ; 36(4): 728-43, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15010335

RESUMEN

Several studies have already demonstrated that micro- and milli-calpains (CAPN 1-CAPN 2), calcium-dependent intracellular cysteine-proteases are involved in many biological phenomenon including muscle growth and development. More particularly, recent studies have demonstrated that milli-calpain is implicated in myoblast fusion. Moreover, in primary muscle cells, these proteases do not appear simultaneously throughout muscle cell differentiation. Because micro- and milli-calpains do not have the same intracellular localization, it appears likely that these two calcium-dependent proteases have different biological roles during muscle cell differentiation. The goal of this study is to determine the role of micro-calpain. We therefore, have developed a muscle cell line in which micro-calpain is over-expressed, using the inducible Tet Regulated Expression System. The outcome is observed by following the behavior of different proteins, considered to be potential substrates of the protease. The present study shows important decreases in the expression level of ezrin (68%), vimentin (64%) and caveolin 3 (76%) whereas many other cytoskeletal proteins remain remarkably stable. Concerning the myogenic transcription factors, only the level of myogenin decreased (59%) after the over-expression of micro-calpain. Ultra structural studies have shown that the myofibrils formed near the cell periphery are normally oriented, lying along the longitudinal axis. This regularity is lost progressively towards the cell center where the cytoskeleton presented an increasing disorganization. All these results indicate that micro-calpain is involved in regulation pathway of myogenesis via at least its action on ezrin, vimentin, caveolin 3 and myogenin, a muscle transcription factor.


Asunto(s)
Calpaína/fisiología , Células Musculares/metabolismo , Animales , Calpaína/genética , Caveolina 3 , Caveolinas/genética , Caveolinas/metabolismo , Técnicas de Cultivo de Célula , Diferenciación Celular , Clonación Molecular , Proteínas del Citoesqueleto , ADN Complementario/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Desmina/genética , Desmina/metabolismo , Doxiciclina/farmacología , Fibronectinas/genética , Fibronectinas/metabolismo , Regulación de la Expresión Génica , Humanos , Ratones , Células Musculares/fisiología , Células Musculares/ultraestructura , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/ultraestructura , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Proteína MioD/genética , Proteína MioD/metabolismo , Factor 5 Regulador Miogénico , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Vimentina/genética , Vimentina/metabolismo
7.
Cell Transplant ; 21(12): 2665-76, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22963730

RESUMEN

Cell therapies consist in transplanting healthy cells into a disabled tissue with the goal to repopulate it and restore its function at least partially. In muscular diseases, most of the time, myoblasts are chosen for their expansion capacity in culture. Nevertheless, cell transplantation has limitations, among them, death of the transplanted cells, during the days following the graft. One possibility to counteract this problem is to enhance the proliferation of the transplanted myoblasts before their fusion with the existing muscle fibers. AG490 is a specific inhibitor of janus tyrosine kinase 2 (JAK2). The hypothesis is to block myoblast differentiation with AG490, thus permitting their proliferation. The inhibition of myoblast fusion by AG490 was confirmed in this study by gene expression and with a myosin heavy chain staining (MyHC). Moreover, cell survival was estimated by flow cytometry. AG490 was found to protect myoblasts in vitro from apoptosis induced by H(2)O(2) or by preventing attachment of cells to their substrate. Finally, in an in vivo model of muscle regeneration, when AG490 was coinjected with the myoblasts their survival was increased by 45% at 5 days after their transplantation.


Asunto(s)
Mioblastos/efectos de los fármacos , Tirfostinos/farmacología , Animales , Diferenciación Celular , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Peróxido de Hidrógeno/toxicidad , Masculino , Ratones , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/terapia , Mioblastos/citología , Mioblastos/trasplante , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Adulto Joven
8.
Proteomics ; 7(18): 3289-98, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17849407

RESUMEN

Caveolae are specialised RAFTs (detergent-resistant membrane microdomains enriched in cholesterol and glycosphingolipids). Caveolin, the main caveolae protein, is essential to the organisation of proteins and lipids, and interacts with numerous mediating proteins through a 'Caveolin Scalfolding Domain'. Consequently, caveolae play a major role in signal transduction and appear to be veritable signalling platforms. In muscle cells, caveolae are essential for fusion and differentiation, and are also implicated in a type of muscular dystrophy (LGMD1C). In a preceding work, we demonstrated the presence of active milli-calpain (m-calpain) in myotube caveolae. Calpains are calcium-dependent proteases involved in several cellular processes, including myoblast fusion and migration, PKC-mediated intracellular signalling and remodelling of the cytoskeleton. For the first time, we have proved the cholesterol-dependent localisation of m-calpain in the caveolae of C(2)C(12) myotubes. Calpain-dependent caveolae involvement in myoblast fusion was also strongly suggested. Furthermore, eight differentially expressed caveolae associated proteins were identified by 2-DE and LC-MS/MS analyses using an m-calpain antisense strategy. This proteomic study also demonstrates the action of m-calpain on vimentin, desmin and vinculin in myotube caveolae and suggests m-calpain's role in several mitochondrial pathways.


Asunto(s)
Calpaína/metabolismo , Caveolas/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Proteoma , Secuencia de Aminoácidos , Secuencia de Bases , Western Blotting , Cromatografía Liquida , Electroforesis en Gel Bidimensional , Inmunohistoquímica , Datos de Secuencia Molecular , Fibras Musculares Esqueléticas/efectos de los fármacos , Proteína Quinasa C/metabolismo , ARN sin Sentido/farmacología , Transducción de Señal , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA