Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cell ; 181(4): 865-876.e12, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32353252

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic, caused by the SARS-CoV-2 virus, has highlighted the need for antiviral approaches that can target emerging viruses with no effective vaccines or pharmaceuticals. Here, we demonstrate a CRISPR-Cas13-based strategy, PAC-MAN (prophylactic antiviral CRISPR in human cells), for viral inhibition that can effectively degrade RNA from SARS-CoV-2 sequences and live influenza A virus (IAV) in human lung epithelial cells. We designed and screened CRISPR RNAs (crRNAs) targeting conserved viral regions and identified functional crRNAs targeting SARS-CoV-2. This approach effectively reduced H1N1 IAV load in respiratory epithelial cells. Our bioinformatic analysis showed that a group of only six crRNAs can target more than 90% of all coronaviruses. With the development of a safe and effective system for respiratory tract delivery, PAC-MAN has the potential to become an important pan-coronavirus inhibition strategy.


Asunto(s)
Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Sistemas CRISPR-Cas , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , ARN Viral/antagonistas & inhibidores , Células A549 , Profilaxis Antibiótica/métodos , Secuencia de Bases , Betacoronavirus/genética , Betacoronavirus/crecimiento & desarrollo , COVID-19 , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Simulación por Computador , Secuencia Conservada , Coronavirus/efectos de los fármacos , Coronavirus/genética , Coronavirus/crecimiento & desarrollo , Infecciones por Coronavirus/tratamiento farmacológico , Proteínas de la Nucleocápside de Coronavirus , ARN Polimerasa Dependiente de ARN de Coronavirus , Células Epiteliales/virología , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/crecimiento & desarrollo , Pulmón/patología , Pulmón/virología , Proteínas de la Nucleocápside/genética , Pandemias , Fosfoproteínas , Filogenia , Neumonía Viral/tratamiento farmacológico , ARN Polimerasa Dependiente del ARN/genética , SARS-CoV-2 , Proteínas no Estructurales Virales/genética
2.
Nature ; 625(7996): 805-812, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38093011

RESUMEN

CRISPR-enabled screening is a powerful tool for the discovery of genes that control T cell function and has nominated candidate targets for immunotherapies1-6. However, new approaches are required to probe specific nucleotide sequences within key genes. Systematic mutagenesis in primary human T cells could reveal alleles that tune specific phenotypes. DNA base editors are powerful tools for introducing targeted mutations with high efficiency7,8. Here we develop a large-scale base-editing mutagenesis platform with the goal of pinpointing nucleotides that encode amino acid residues that tune primary human T cell activation responses. We generated a library of around 117,000 single guide RNA molecules targeting base editors to protein-coding sites across 385 genes implicated in T cell function and systematically identified protein domains and specific amino acid residues that regulate T cell activation and cytokine production. We found a broad spectrum of alleles with variants encoding critical residues in proteins including PIK3CD, VAV1, LCP2, PLCG1 and DGKZ, including both gain-of-function and loss-of-function mutations. We validated the functional effects of many alleles and further demonstrated that base-editing hits could positively and negatively tune T cell cytotoxic function. Finally, higher-resolution screening using a base editor with relaxed protospacer-adjacent motif requirements9 (NG versus NGG) revealed specific structural domains and protein-protein interaction sites that can be targeted to tune T cell functions. Base-editing screens in primary immune cells thus provide biochemical insights with the potential to accelerate immunotherapy design.


Asunto(s)
Alelos , Edición Génica , Mutagénesis , Linfocitos T , Humanos , Aminoácidos/genética , Sistemas CRISPR-Cas/genética , Mutagénesis/genética , ARN Guía de Sistemas CRISPR-Cas/genética , Linfocitos T/inmunología , Linfocitos T/metabolismo , Activación de Linfocitos , Citocinas/biosíntesis , Citocinas/metabolismo , Mutación con Ganancia de Función , Mutación con Pérdida de Función
3.
Nature ; 628(8008): 639-647, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38570691

RESUMEN

Prime editing enables the precise modification of genomes through reverse transcription of template sequences appended to the 3' ends of CRISPR-Cas guide RNAs1. To identify cellular determinants of prime editing, we developed scalable prime editing reporters and performed genome-scale CRISPR-interference screens. From these screens, a single factor emerged as the strongest mediator of prime editing: the small RNA-binding exonuclease protection factor La. Further investigation revealed that La promotes prime editing across approaches (PE2, PE3, PE4 and PE5), edit types (substitutions, insertions and deletions), endogenous loci and cell types but has no consistent effect on genome-editing approaches that rely on standard, unextended guide RNAs. Previous work has shown that La binds polyuridine tracts at the 3' ends of RNA polymerase III transcripts2. We found that La functionally interacts with the 3' ends of polyuridylated prime editing guide RNAs (pegRNAs). Guided by these results, we developed a prime editor protein (PE7) fused to the RNA-binding, N-terminal domain of La. This editor improved prime editing with expressed pegRNAs and engineered pegRNAs (epegRNAs), as well as with synthetic pegRNAs optimized for La binding. Together, our results provide key insights into how prime editing components interact with the cellular environment and suggest general strategies for stabilizing exogenous small RNAs therein.


Asunto(s)
Edición Génica , Proteínas de Unión al ARN , Humanos , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Células K562 , Poli U/genética , Poli U/metabolismo , ARN Polimerasa III/metabolismo , ARN Guía de Sistemas CRISPR-Cas/genética , ARN Guía de Sistemas CRISPR-Cas/metabolismo , Proteínas de Unión al ARN/metabolismo
4.
Mol Cell ; 78(1): 184-191.e3, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32027839

RESUMEN

The ability to integrate biological signals and execute a functional response when appropriate is critical for sophisticated cell engineering using synthetic biology. Although the CRISPR-Cas system has been harnessed for synthetic manipulation of the genome, it has not been fully utilized for complex environmental signal sensing, integration, and actuation. Here, we develop a split dCas12a platform and show that it allows for the construction of multi-input, multi-output logic circuits in mammalian cells. The system is highly programmable and can generate expandable AND gates with two, three, and four inputs. It can also incorporate NOT logic by using anti-CRISPR proteins as an OFF switch. By coupling the split dCas12a design to multiple tumor-relevant promoters, we provide a proof of concept that the system can implement logic gating to specifically detect breast cancer cells and execute therapeutic immunomodulatory responses.


Asunto(s)
Proteínas Asociadas a CRISPR , Sistemas CRISPR-Cas , Ingeniería Celular , Neoplasias de la Mama/genética , Neoplasias de la Mama/terapia , Línea Celular Tumoral , Dimerización , Femenino , Células HEK293 , Humanos , Activación Transcripcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA