Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Mach Learn ; 112(11): 4257-4287, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37900054

RESUMEN

Molecular gene-expression datasets consist of samples with tens of thousands of measured quantities (i.e., high dimensional data). However, lower-dimensional representations that retain the useful biological information do exist. We present a novel algorithm for such dimensionality reduction called Pathway Activity Score Learning (PASL). The major novelty of PASL is that the constructed features directly correspond to known molecular pathways (genesets in general) and can be interpreted as pathway activity scores. Hence, unlike PCA and similar methods, PASL's latent space has a fairly straightforward biological interpretation. PASL is shown to outperform in predictive performance the state-of-the-art method (PLIER) on two collections of breast cancer and leukemia gene expression datasets. PASL is also trained on a large corpus of 50000 gene expression samples to construct a universal dictionary of features across different tissues and pathologies. The dictionary validated on 35643 held-out samples for reconstruction error. It is then applied on 165 held-out datasets spanning a diverse range of diseases. The AutoML tool JADBio is employed to show that the predictive information in the PASL-created feature space is retained after the transformation. The code is available at https://github.com/mensxmachina/PASL.

3.
PLoS One ; 16(6): e0252537, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34061904

RESUMEN

OBJECTIVE: We prospectively recorded clinical and laboratory parameters from patients with metastatic non-small cell lung cancer (NSCLC) treated with 2nd line PD-1/PD-L1 inhibitors in order to address their effect on treatment outcomes. MATERIALS AND METHODS: Clinicopathological information (age, performance status, smoking, body mass index, histology, organs with metastases), use and duration of proton pump inhibitors, steroids and antibiotics (ATB) and laboratory values [neutrophil/lymphocyte ratio, LDH, albumin] were prospectively collected. Steroid administration was defined as the use of > 10 mg prednisone equivalent for ≥ 10 days. Prolonged ATB administration was defined as ATB ≥ 14 days 30 days before or within the first 3 months of treatment. JADBio, a machine learning pipeline was applied for further multivariate analysis. RESULTS: Data from 66 pts with non-oncogenic driven metastatic NSCLC were analyzed; 15.2% experienced partial response (PR), 34.8% stable disease (SD) and 50% progressive disease (PD). Median overall survival (OS) was 6.77 months. ATB administration did not affect patient OS [HR = 1.35 (CI: 0.761-2.406, p = 0.304)], however, prolonged ATBs [HR = 2.95 (CI: 1.62-5.36, p = 0.0001)] and the presence of bone metastases [HR = 1.89 (CI: 1.02-3.51, p = 0.049)] independently predicted for shorter survival. Prolonged ATB administration, bone metastases, liver metastases and BMI < 25 kg/m2 were selected by JADbio as the important features that were associated with increased probability of developing disease progression as response to treatment. The resulting algorithm that was created was able to predict the probability of disease stabilization (PR or SD) in a single individual with an AUC = 0.806 [95% CI:0.714-0.889]. CONCLUSIONS: Our results demonstrate an adverse effect of prolonged ATBs on response and survival and underscore their importance along with the presence of bone metastases, liver metastases and low BMI in the individual prediction of outcomes in patients treated with immunotherapy.


Asunto(s)
Antibacterianos/efectos adversos , Antígeno B7-H1/antagonistas & inhibidores , Neoplasias Óseas/secundario , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Inmunoterapia/métodos , Neoplasias Hepáticas/secundario , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Femenino , Estudios de Seguimiento , Humanos , Estimación de Kaplan-Meier , Neoplasias Pulmonares/mortalidad , Aprendizaje Automático , Masculino , Persona de Mediana Edad , Pronóstico , Supervivencia sin Progresión , Estudios Prospectivos
4.
J Clin Med ; 9(9)2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-32962113

RESUMEN

Alzheimer's disease (AD) is the most common form of neurodegenerative dementia and its timely diagnosis remains a major challenge in biomarker discovery. In the present study, we analyzed publicly available high-throughput low-sample -omics datasets from studies in AD blood, by the AutoML technology Just Add Data Bio (JADBIO), to construct accurate predictive models for use as diagnostic biosignatures. Considering data from AD patients and age-sex matched cognitively healthy individuals, we produced three best performing diagnostic biosignatures specific for the presence of AD: A. A 506-feature transcriptomic dataset from 48 AD and 22 controls led to a miRNA-based biosignature via Support Vector Machines with three miRNA predictors (AUC 0.975 (0.906, 1.000)), B. A 38,327-feature transcriptomic dataset from 134 AD and 100 controls led to six mRNA-based statistically equivalent signatures via Classification Random Forests with 25 mRNA predictors (AUC 0.846 (0.778, 0.905)) and C. A 9483-feature proteomic dataset from 25 AD and 37 controls led to a protein-based biosignature via Ridge Logistic Regression with seven protein predictors (AUC 0.921 (0.849, 0.972)). These performance metrics were also validated through the JADBIO pipeline confirming stability. In conclusion, using the automated machine learning tool JADBIO, we produced accurate predictive biosignatures extrapolating available low sample -omics data. These results offer options for minimally invasive blood-based diagnostic tests for AD, awaiting clinical validation based on respective laboratory assays. They also highlight the value of AutoML in biomarker discovery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA