RESUMEN
Drug repurposing requires distinguishing established drug class targets from novel molecule-specific mechanisms and rapidly derisking their therapeutic potential in a time-critical manner, particularly in a pandemic scenario. In response to the challenge to rapidly identify treatment options for COVID-19, several studies reported that statins, as a drug class, reduce mortality in these patients. However, it is unknown if different statins exhibit consistent function or may have varying therapeutic benefit. A Bayesian network tool was used to predict drugs that shift the host transcriptomic response to SARS-CoV-2 infection towards a healthy state. Drugs were predicted using 14 RNA-sequencing datasets from 72 autopsy tissues and 465 COVID-19 patient samples or from cultured human cells and organoids infected with SARS-CoV-2. Top drug predictions included statins, which were then assessed using electronic medical records containing over 4,000 COVID-19 patients on statins to determine mortality risk in patients prescribed specific statins versus untreated matched controls. The same drugs were tested in Vero E6 cells infected with SARS-CoV-2 and human endothelial cells infected with a related OC43 coronavirus. Simvastatin was among the most highly predicted compounds (14/14 datasets) and five other statins, including atorvastatin, were predicted to be active in > 50% of analyses. Analysis of the clinical database revealed that reduced mortality risk was only observed in COVID-19 patients prescribed a subset of statins, including simvastatin and atorvastatin. In vitro testing of SARS-CoV-2 infected cells revealed simvastatin to be a potent direct inhibitor whereas most other statins were less effective. Simvastatin also inhibited OC43 infection and reduced cytokine production in endothelial cells. Statins may differ in their ability to sustain the lives of COVID-19 patients despite having a shared drug target and lipid-modifying mechanism of action. These findings highlight the value of target-agnostic drug prediction coupled with patient databases to identify and clinically evaluate non-obvious mechanisms and derisk and accelerate drug repurposing opportunities.
Asunto(s)
COVID-19 , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , SARS-CoV-2 , Atorvastatina/farmacología , Teorema de Bayes , Células Endoteliales , Simvastatina/farmacología , Simvastatina/uso terapéutico , Reposicionamiento de Medicamentos , Registros MédicosRESUMEN
Human organs-on-chips (organ chips) are small microfluidic devices that allow human cells to perform complex organ-level functions in vitro by recreating multi-cellular and multi-tissue structures and applying in vivo-like biomechanical cues. Human Organ Chips are being used for drug discovery and toxicology testing as an alternative to animal models which are ethically challenging and often do not predict clinical efficacy or toxicity. In this mini-review, we summarize our presentation that reviewed the state of the art relating to these microfluidic culture devices designed to mimic specific human organ structures and functions, and the application of Organ Chips to regenerative pharmacology.
Asunto(s)
Dispositivos Laboratorio en un Chip , Sistemas Microfisiológicos , Animales , Humanos , Modelos Animales , Descubrimiento de DrogasRESUMEN
Alterations in intestinal structure, mechanics and physiology underlie acute and chronic intestinal conditions, many of which are influenced by dysregulation of microbiome, peristalsis, stroma or immune responses. Studying human intestinal physiology or pathophysiology is difficult in preclinical animal models because their microbiomes and immune systems differ from those of humans. Although advances in organoid culture partially overcome this challenge, intestinal organoids still lack crucial features that are necessary to study functions central to intestinal health and disease, such as digestion or fluid flow, as well as contributions from long-term effects of living microbiome, peristalsis and immune cells. Here, we review developments in organ-on-a-chip (organ chip) microfluidic culture models of the human intestine that are lined by epithelial cells and interfaced with other tissues (such as stroma or endothelium), which can experience both fluid flow and peristalsis-like motions. Organ chips offer powerful ways to model intestinal physiology and disease states for various human populations and individual patients, and can be used to gain new insight into underlying molecular and biophysical mechanisms of disease. They can also be used as preclinical tools to discover new drugs and then validate their therapeutic efficacy and safety in the same human-relevant model.
Asunto(s)
Dispositivos Laboratorio en un Chip , Organoides , Medicina de Precisión , Humanos , Organoides/fisiología , Enfermedades Intestinales/fisiopatología , Intestinos/fisiología , Modelos Biológicos , Sistemas MicrofisiológicosRESUMEN
BACKGROUND: Sulfadoxine-pyrimethamine (SP) antimalarial therapy has been suggested to potentially increase the birth weight of infants in pregnant women in sub-Saharan Africa, independently of malarial infection. Here, we utilized female intestinal organoid-derived cells cultured within microfluidic Organ Chips to investigate whether SP could directly impact intestinal function and thereby improve the absorption of essential fats and nutrients crucial for fetal growth. METHODS: Using a human organ-on-a-chip model, we replicated the adult female intestine with patient organoid-derived duodenal epithelial cells interfaced with human intestinal endothelial cells. Nutrient-deficient (ND) medium was perfused to simulate malnutrition, resulting in the appearance of enteric dysfunction indicators such as villus blunting, reduced mucus production, impaired nutrient absorption, and increased inflammatory cytokine secretion. SP was administered to these chips in the presence or absence of human peripheral blood mononuclear cells (PBMCs). FINDINGS: Our findings revealed that SP treatment effectively reversed multiple intestinal absorptive abnormalities observed in malnourished female Intestine Chips, as validated by transcriptomic and proteomic analyses. SP also reduced the production of inflammatory cytokines and suppressed the recruitment of PBMCs in ND chips. INTERPRETATION: Our results indicate that SP could potentially increase birth weights by preventing enteric dysfunction and suppressing intestinal inflammation. This underscores the potential of SP as a targeted intervention to improve maternal absorption, subsequently contributing to healthier fetal growth. While SP treatment shows promise in addressing malabsorption issues that can influence infant birth weight, we did not model pregnancy in our chips, and thus its usefulness for treatment of malnourished pregnant women requires further investigation through clinical trials. FUNDING: The Bill and Melinda Gates Foundation, and the Wyss Institute for Biologically Inspired Engineering at Harvard University, and the HDDC Organoid Core of the P30 DK034854.
Asunto(s)
Antimaláricos , Desnutrición , Complicaciones Parasitarias del Embarazo , Sulfadoxina , Adulto , Femenino , Humanos , Embarazo , Peso al Nacer , Células Endoteliales , Leucocitos Mononucleares , Proteómica , Pirimetamina/farmacología , Pirimetamina/uso terapéutico , Antimaláricos/uso terapéutico , Combinación de Medicamentos , Intestinos , Desnutrición/complicaciones , Desnutrición/tratamiento farmacológicoRESUMEN
Alveolar macrophages (AMs) are the major sentinel immune cells in human alveoli and play a central role in eliciting host inflammatory responses upon distal lung viral infection. Here, we incorporated peripheral human monocyte-derived macrophages within a microfluidic human Lung Alveolus Chip that recreates the human alveolar-capillary interface under an air-liquid interface along with vascular flow to study how residential AMs contribute to the human pulmonary response to viral infection. When Lung Alveolus Chips that were cultured with macrophages were infected with influenza H3N2, there was a major reduction in viral titers compared to chips without macrophages; however, there was significantly greater inflammation and tissue injury. Pro-inflammatory cytokine levels, recruitment of immune cells circulating through the vascular channel, and expression of genes involved in myelocyte activation were all increased, and this was accompanied by reduced epithelial and endothelial cell viability and compromise of the alveolar tissue barrier. These effects were partially mediated through activation of pyroptosis in macrophages and release of pro-inflammatory mediators, such as interleukin (IL)-1ß, and blocking pyroptosis via caspase-1 inhibition suppressed lung inflammation and injury on-chip. These findings demonstrate how integrating tissue resident immune cells within human Lung Alveolus Chip can identify potential new therapeutic targets and uncover cell and molecular mechanisms that contribute to the development of viral pneumonia and acute respiratory distress syndrome (ARDS).
RESUMEN
Current SARS-CoV-2 vaccines have demonstrated robust induction of neutralizing antibodies and CD4+ T cell activation, however CD8+ responses are variable, and the duration of immunity and protection against variants are limited. Here we repurposed our DNA origami vaccine platform, DoriVac, for targeting infectious viruses, namely SARS-CoV-2, HIV, and Ebola. The DNA origami nanoparticle, conjugated with infectious-disease-specific HR2 peptides, which act as highly conserved antigens, and CpG adjuvant at precise nanoscale spacing, induced neutralizing antibodies, Th1 CD4+ T cells, and CD8+ T cells in naïve mice, with significant improvement over a bolus control. Pre-clinical studies using lymph-node-on-a-chip systems validated that DoriVac, when conjugated with antigenic peptides or proteins, induced promising cellular immune responses in human cells. These results suggest that DoriVac holds potential as a versatile, modular vaccine platform, capable of inducing both humoral and cellular immunities. The programmability of this platform underscores its potential utility in addressing future pandemics.
RESUMEN
Modulation of the cervix by steroid hormones and commensal microbiome play a central role in the health of the female reproductive tract. Here we describe organ-on-a-chip (Organ Chip) models that recreate the human cervical epithelial-stromal interface with a functional epithelial barrier and production of mucus with biochemical and hormone-responsive properties similar to living cervix. When Cervix Chips are populated with optimal healthy versus dysbiotic microbial communities (dominated by Lactobacillus crispatus and Gardnerella vaginalis, respectively), significant differences in tissue innate immune responses, barrier function, cell viability, proteome, and mucus composition are observed that are similar to those seen in vivo. Thus, human Cervix Organ Chips represent physiologically relevant in vitro models to study cervix physiology and host-microbiome interactions, and hence may be used as a preclinical testbed for development of therapeutic interventions to enhance women's health.
Asunto(s)
Cuello del Útero , Interacciones Microbiota-Huesped , Inmunidad Innata , Microbiota , Humanos , Femenino , Cuello del Útero/microbiología , Cuello del Útero/inmunología , Microbiota/inmunología , Interacciones Microbiota-Huesped/inmunología , Gardnerella vaginalis/inmunología , Lactobacillus crispatus/inmunología , Moco/inmunología , Moco/microbiología , Moco/metabolismo , Dispositivos Laboratorio en un ChipRESUMEN
Mechanical breathing motions have a fundamental function in lung development and disease, but little is known about how they contribute to host innate immunity. Here we use a human lung alveolus chip that experiences cyclic breathing-like deformations to investigate whether physical forces influence innate immune responses to viral infection. Influenza H3N2 infection of mechanically active chips induces a cascade of host responses including increased lung permeability, apoptosis, cell regeneration, cytokines production, and recruitment of circulating immune cells. Comparison with static chips reveals that breathing motions suppress viral replication by activating protective innate immune responses in epithelial and endothelial cells, which are mediated in part through activation of the mechanosensitive ion channel TRPV4 and signaling via receptor for advanced glycation end products (RAGE). RAGE inhibitors suppress cytokines induction, while TRPV4 inhibition attenuates both inflammation and viral burden, in infected chips with breathing motions. Therefore, TRPV4 and RAGE may serve as new targets for therapeutic intervention in patients infected with influenza and other potential pandemic viruses that cause life-threatening lung inflammation.
Asunto(s)
Antígenos de Neoplasias , Inmunidad Innata , Gripe Humana , Proteínas Quinasas Activadas por Mitógenos , Canales Catiónicos TRPV , Antígenos de Neoplasias/metabolismo , Citocinas , Células Endoteliales , Humanos , Subtipo H3N2 del Virus de la Influenza A , Gripe Humana/inmunología , Pulmón , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Canales Catiónicos TRPV/metabolismoRESUMEN
In vitro models of human organs must accurately reconstitute oxygen concentrations and gradients that are observed in vivo to mimic gene expression, metabolism, and host-microbiome interactions. Here we describe a simple strategy to achieve physiologically relevant oxygen tension in a two-channel human small intestine-on-a-chip (Intestine Chip) lined with primary human duodenal epithelium and intestinal microvascular endothelium in parallel channels separated by a porous membrane while both channels are perfused with oxygenated medium. This strategy was developed using computer simulations that predicted lowering the oxygen permeability of poly-dimethylsiloxane (PDMS) chips in specified locations using a gas impermeable film will allow the cells to naturally decrease the oxygen concentration through aerobic respiration and reach steady-state oxygen levels <36 mm Hg (<5%) within the epithelial lumen. The approach was experimentally confirmed using chips with embedded oxygen sensors that maintained this stable oxygen gradient. Furthermore, Intestine Chips cultured with this approach supported formation of a villus epithelium interfaced with a continuous endothelium and maintained intestinal barrier integrity for 72 h. This strategy recapitulates in vivo functionality in an efficient, inexpensive, and scalable format that improves the robustness and translatability of Organ Chip technology for studies on microbiome as well as oxygen sensitivity.
Asunto(s)
Dispositivos Laboratorio en un Chip , Microfluídica , Humanos , Mucosa Intestinal , Oxígeno , PorosidadRESUMEN
The ongoing COVID-19 pandemic has claimed more than 6 million lives and continues to test the world economy and healthcare systems. To combat this pandemic, the biological research community has shifted efforts to the development of medical countermeasures, including vaccines and therapeutics. However, to date, the only small molecules approved for the treatment of COVID-19 in the United States are the nucleoside analogue Remdesivir and the protease inhibitor Paxlovid, though multiple compounds have received Emergency Use Authorization and many more are currently being tested in human efficacy trials. One such compound, Apilimod, is being considered as a COVID-19 therapeutic in a Phase II efficacy trial. However, at the time of writing, there are no published efficacy data in human trials or animal COVID-19 models. Here we show that, while Apilimod and other PIKfyve inhibitors have potent antiviral activity in various cell lines against multiple human coronaviruses, these compounds worsen disease in a COVID-19 murine model when given prophylactically or therapeutically.
Asunto(s)
Tratamiento Farmacológico de COVID-19 , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Modelos Animales de Enfermedad , Humanos , Ratones , Pandemias , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de ProteasasRESUMEN
BACKGROUND: A dominance of non-iners Lactobacillus species in the vaginal microbiome is optimal and strongly associated with gynecological and obstetric health, while the presence of diverse obligate or facultative anaerobic bacteria and a paucity in Lactobacillus species, similar to communities found in bacterial vaginosis (BV), is considered non-optimal and associated with adverse health outcomes. Various therapeutic strategies are being explored to modulate the composition of the vaginal microbiome; however, there is no human model that faithfully reproduces the vaginal epithelial microenvironment for preclinical validation of potential therapeutics or testing hypotheses about vaginal epithelium-microbiome interactions. RESULTS: Here, we describe an organ-on-a-chip (organ chip) microfluidic culture model of the human vaginal mucosa (vagina chip) that is lined by hormone-sensitive, primary vaginal epithelium interfaced with underlying stromal fibroblasts, which sustains a low physiological oxygen concentration in the epithelial lumen. We show that the Vagina Chip can be used to assess colonization by optimal L. crispatus consortia as well as non-optimal Gardnerella vaginalis-containing consortia, and to measure associated host innate immune responses. Co-culture and growth of the L. crispatus consortia on-chip was accompanied by maintenance of epithelial cell viability, accumulation of D- and L-lactic acid, maintenance of a physiologically relevant low pH, and down regulation of proinflammatory cytokines. In contrast, co-culture of G. vaginalis-containing consortia in the vagina chip resulted in epithelial cell injury, a rise in pH, and upregulation of proinflammatory cytokines. CONCLUSION: This study demonstrates the potential of applying human organ chip technology to create a preclinical model of the human vaginal mucosa that can be used to better understand interactions between the vaginal microbiome and host tissues, as well as to evaluate the safety and efficacy of live biotherapeutics products. Video Abstract.
Asunto(s)
Microbiota , Vaginosis Bacteriana , Femenino , Embarazo , Humanos , Dispositivos Laboratorio en un Chip , Vagina , CitocinasRESUMEN
Environmental enteric dysfunction (EED)-a chronic inflammatory condition of the intestine-is characterized by villus blunting, compromised intestinal barrier function and reduced nutrient absorption. Here we show that essential genotypic and phenotypic features of EED-associated intestinal injury can be reconstituted in a human intestine-on-a-chip lined by organoid-derived intestinal epithelial cells from patients with EED and cultured in nutrient-deficient medium lacking niacinamide and tryptophan. Exposure of the organ chip to such nutritional deficiencies resulted in congruent changes in six of the top ten upregulated genes that were comparable to changes seen in samples from patients with EED. Chips lined with healthy epithelium or with EED epithelium exposed to nutritional deficiencies resulted in severe villus blunting and barrier dysfunction, and in the impairment of fatty acid uptake and amino acid transport; and the chips with EED epithelium exhibited heightened secretion of inflammatory cytokines. The organ-chip model of EED-associated intestinal injury may facilitate the analysis of the molecular, genetic and nutritional bases of the disease and the testing of candidate therapeutics for it.
Asunto(s)
Enfermedades Intestinales , Desnutrición , Humanos , Dispositivos Laboratorio en un Chip , Intestinos , Intestino Delgado/metabolismo , Desnutrición/metabolismoRESUMEN
Importance: Drug repurposing requires distinguishing established drug class targets from novel molecule-specific mechanisms and rapidly derisking their therapeutic potential in a time-critical manner, particularly in a pandemic scenario. In response to the challenge to rapidly identify treatment options for COVID-19, several studies reported that statins, as a drug class, reduce mortality in these patients. However, it is unknown if different statins exhibit consistent function or may have varying therapeutic benefit. Objectives: To test if different statins differ in their ability to exert protective effects based on molecular computational predictions and electronic medical record analysis. Main Outcomes and Measures: A Bayesian network tool was used to predict drugs that shift the host transcriptomic response to SARS-CoV-2 infection towards a healthy state. Drugs were predicted using 14 RNA-sequencing datasets from 72 autopsy tissues and 465 COVID-19 patient samples or from cultured human cells and organoids infected with SARS-CoV-2, with a total of 2,436 drugs investigated. Top drug predictions included statins, which were then assessed using electronic medical records containing over 4,000 COVID-19 patients on statins to determine mortality risk in patients prescribed specific statins versus untreated matched controls. The same drugs were tested in Vero E6 cells infected with SARS-CoV-2 and human endothelial cells infected with a related OC43 coronavirus. Results: Simvastatin was among the most highly predicted compounds (14/14 datasets) and five other statins, including atorvastatin, were predicted to be active in > 50% of analyses. Analysis of the clinical database revealed that reduced mortality risk was only observed in COVID-19 patients prescribed a subset of statins, including simvastatin and atorvastatin. In vitro testing of SARS-CoV-2 infected cells revealed simvastatin to be a potent direct inhibitor whereas most other statins were less effective. Simvastatin also inhibited OC43 infection and reduced cytokine production in endothelial cells. Conclusions and Relevance: Different statins may differ in their ability to sustain the lives of COVID-19 patients despite having a shared drug target and lipid-modifying mechanism of action. These findings highlight the value of target-agnostic drug prediction coupled with patient databases to identify and clinically evaluate non-obvious mechanisms and derisk and accelerate drug repurposing opportunities.
RESUMEN
Lymphoid follicles (LFs) are responsible for generation of adaptive immune responses in secondary lymphoid organs and form ectopically during chronic inflammation. A human model of ectopic LF formation will provide a tool to understand LF development and an alternative to non-human primates for preclinical evaluation of vaccines. Here, it is shown that primary human blood B- and T-lymphocytes autonomously assemble into ectopic LFs when cultured in a 3D extracellular matrix gel within one channel of a two-channel organ-on-a-chip microfluidic device. Superfusion via a parallel channel separated by a microporous membrane is required for LF formation and prevents lymphocyte autoactivation. These germinal center-like LFs contain B cells expressing Activation-Induced Cytidine Deaminase and exhibit plasma cell differentiation upon activation. To explore their utility for seasonal vaccine testing, autologous monocyte-derived dendritic cells are integrated into LF Chips. The human LF chips demonstrate improved antibody responses to split virion influenza vaccination compared to 2D cultures, which are enhanced by a squalene-in-water emulsion adjuvant, and this is accompanied by increases in LF size and number. When inoculated with commercial influenza vaccine, plasma cell formation and production of anti-hemagglutinin IgG are observed, as well as secretion of cytokines similar to vaccinated humans over clinically relevant timescales.
Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Estructuras Linfoides Terciarias , Animales , Anticuerpos Antivirales , Humanos , Gripe Humana/prevención & control , Dispositivos Laboratorio en un Chip , Estaciones del Año , VacunaciónRESUMEN
Many patients infected with coronaviruses, such as SARS-CoV-2 and NL63 that use ACE2 receptors to infect cells, exhibit gastrointestinal symptoms and viral proteins are found in the human gastrointestinal tract, yet little is known about the inflammatory and pathological effects of coronavirus infection on the human intestine. Here, we used a human intestine-on-a-chip (Intestine Chip) microfluidic culture device lined by patient organoid-derived intestinal epithelium interfaced with human vascular endothelium to study host cellular and inflammatory responses to infection with NL63 coronavirus. These organoid-derived intestinal epithelial cells dramatically increased their ACE2 protein levels when cultured under flow in the presence of peristalsis-like mechanical deformations in the Intestine Chips compared to when cultured statically as organoids or in Transwell inserts. Infection of the intestinal epithelium with NL63 on-chip led to inflammation of the endothelium as demonstrated by loss of barrier function, increased cytokine production, and recruitment of circulating peripheral blood mononuclear cells (PBMCs). Treatment of NL63 infected chips with the approved protease inhibitor drug, nafamostat, inhibited viral entry and resulted in a reduction in both viral load and cytokine secretion, whereas remdesivir, one of the few drugs approved for COVID19 patients, was not found to be effective and it also was toxic to the endothelium. This model of intestinal infection was also used to test the effects of other drugs that have been proposed for potential repurposing against SARS-CoV-2. Taken together, these data suggest that the human Intestine Chip might be useful as a human preclinical model for studying coronavirus related pathology as well as for testing of potential anti-viral or anti-inflammatory therapeutics.
RESUMEN
The rapid repurposing of antivirals is particularly pressing during pandemics. However, rapid assays for assessing candidate drugs typically involve in vitro screens and cell lines that do not recapitulate human physiology at the tissue and organ levels. Here we show that a microfluidic bronchial-airway-on-a-chip lined by highly differentiated human bronchial-airway epithelium and pulmonary endothelium can model viral infection, strain-dependent virulence, cytokine production and the recruitment of circulating immune cells. In airway chips infected with influenza A, the co-administration of nafamostat with oseltamivir doubled the treatment-time window for oseltamivir. In chips infected with pseudotyped severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), clinically relevant doses of the antimalarial drug amodiaquine inhibited infection but clinical doses of hydroxychloroquine and other antiviral drugs that inhibit the entry of pseudotyped SARS-CoV-2 in cell lines under static conditions did not. We also show that amodiaquine showed substantial prophylactic and therapeutic activities in hamsters challenged with native SARS-CoV-2. The human airway-on-a-chip may accelerate the identification of therapeutics and prophylactics with repurposing potential.
Asunto(s)
Antivirales/farmacología , Antivirales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Prueba de COVID-19/métodos , Dispositivos Laboratorio en un Chip , Animales , COVID-19/diagnóstico , COVID-19/virología , Línea Celular , Cricetinae , Femenino , Proteínas Fluorescentes Verdes , Humanos , Masculino , SARS-CoV-2/efectos de los fármacos , Internalización del Virus/efectos de los fármacosRESUMEN
Peroxisome proliferator activated receptor-γ (PPARγ) is a lipid-activated nuclear receptor that promotes immune tolerance through effects on macrophages, dendritic cells (DCs), and regulatory T cells (Tregs). Granulocyte-macrophage colony stimulating factor (GM-CSF) induces PPARγ expression in multiple myeloid cell types. GM-CSF contributes to both immune tolerance and protection, but the role of PPARγ in these pathways is poorly understood. Here, we reveal an unexpected stimulatory role for PPARγ in the generation of antitumor immunity with irradiated, GM-CSF-secreting tumor-cell vaccines (GVAX). Mice harboring a deletion of pparg in lysozyme M (LysM)-expressing myeloid cells (KO) showed a decreased ratio of CD8+ T effectors to Tregs and impaired tumor rejection with GVAX. Diminished tumor protection was associated with altered DC responses and increased production of the Treg attracting chemokines CCL17 and CLL22. Correspondingly, the systemic administration of PPARγ agonists to vaccinated mice elevated the CD8+ T effector to Treg ratio through effects on myeloid cells and intensified the antitumor activity of GVAX combined with cytotoxic T lymphocyte-associated antigen-4 antibody blockade. PPARγ agonists similarly attenuated Treg induction and decreased CCL17 and CCL22 levels in cultures of human peripheral blood mononuclear cells with GM-CSF-secreting tumor cells. Together, these results highlight a key role for myeloid cell PPARγ in GM-CSF-stimulated antitumor immunity and suggest that PPARγ agonists might be useful in cancer immunotherapy. Cancer Immunol Res; 6(6); 723-32. ©2018 AACR.
Asunto(s)
Vacunas contra el Cáncer/inmunología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/biosíntesis , Neoplasias/inmunología , Neoplasias/metabolismo , PPAR gamma/metabolismo , Animales , Vacunas contra el Cáncer/uso terapéutico , Línea Celular Tumoral , Citocinas/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunomodulación , Inmunoterapia , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Melanoma Experimental , Ratones , Neoplasias/patología , Neoplasias/terapia , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Resultado del TratamientoRESUMEN
Ectopic expression of the Mycobacterium tuberculosis PE-family gene Rv1818c, triggers apoptosis in the mammalian Jurkat T cells, which is blocked by anti-apoptotic protein Bcl-2. Although complete overlap is not observed, a considerable proportion of cellular pools of ectopically expressed Rv1818c localizes to mitochondria. However, recombinant Rv1818c does not trigger release of cytochrome c from isolated mitochondria even though Rv1818c protein induced apoptosis of Jurkat T cells. Apoptosis induced by Rv1818c is blocked by the broad-spectrum caspase inhibitory peptide zVAD-FMK. Unexpectedly, Rv1818c-induced apoptosis is not blocked in a Jurkat sub-clone deficient for caspase-8 (JI 9.2) or in cells where caspase-9 function is inhibited or expression of caspase-9 reduced by siRNA, arguing against a central role for these caspases in Rv1818c-induced apoptotic signaling. Depleting cellular pools of the mitochondrial protein Smac/DIABLO substantially reduces apoptosis consistent with mitochondrial involvement in this death pathway. We present evidence that Rv1818c-induced apoptosis is blocked by the co-transfection of an endogenous inhibitor of caspase activation, XIAP in T cells. Additionally, Rv1818c is released into extracellular environment via exosomes secreted by M. tuberculosis infected BM-DC's and macrophages. Furthermore, the extracellular Rv1818c protein can be detected in T cells co-cultured with infected BM-DC's. Taken together, these data suggest that Rv1818c-induced apoptotic signaling is likely regulated in part by the Smac-dependent activation of caspases in T cells.
Asunto(s)
Antígenos Bacterianos/farmacología , Apoptosis , Proteínas Bacterianas/farmacología , Proteínas de la Membrana/farmacología , Mycobacterium tuberculosis/patogenicidad , Antígenos Bacterianos/genética , Antígenos Bacterianos/metabolismo , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Células de la Médula Ósea , Caspasas/metabolismo , Células Cultivadas , Células Dendríticas , Activación Enzimática , Humanos , Proteínas Inhibidoras de la Apoptosis/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Células Jurkat , Macrófagos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Linfocitos T/metabolismoRESUMEN
Here, we show that microfluidic organ-on-a-chip (organ chip) cell culture technology can be used to create in vitro human orthotopic models of non-small-cell lung cancer (NSCLC) that recapitulate organ microenvironment-specific cancer growth, tumor dormancy, and responses to tyrosine kinase inhibitor (TKI) therapy observed in human patients in vivo. Use of the mechanical actuation functionalities of this technology revealed a previously unknown sensitivity of lung cancer cell growth, invasion, and TKI therapeutic responses to physical cues associated with breathing motions, which appear to be mediated by changes in signaling through epidermal growth factor receptor (EGFR) and MET protein kinase. These findings might help to explain the high level of resistance to therapy in cancer patients with minimal residual disease in regions of the lung that remain functionally aerated and mobile, in addition to providing an experimental model to study cancer persister cells and mechanisms of tumor dormancy in vitro.
Asunto(s)
Dispositivos Laboratorio en un Chip , Neoplasias Pulmonares/patología , Mucosa Respiratoria/citología , Antineoplásicos/farmacología , Células Cultivadas , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-met/metabolismo , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/metabolismo , Transducción de SeñalRESUMEN
Mice deficient for granulocyte-macrophage colony-stimulating factor (GM-CSF-/-) are highly susceptible to infection with Mycobacterium tuberculosis, and clinical data have shown that anti-GM-CSF neutralizing antibodies can lead to increased susceptibility to tuberculosis in otherwise healthy people. GM-CSF activates human and murine macrophages to inhibit intracellular M. tuberculosis growth. We have previously shown that GM-CSF produced by iNKT cells inhibits growth of M. tuberculosis However, the more general role of T cell-derived GM-CSF during infection has not been defined and how GM-CSF activates macrophages to inhibit bacterial growth is unknown. Here we demonstrate that, in addition to nonconventional T cells, conventional T cells also produce GM-CSF during M. tuberculosis infection. Early during infection, nonconventional iNKT cells and γδ T cells are the main source of GM-CSF, a role subsequently assumed by conventional CD4+ T cells as the infection progresses. M. tuberculosis-specific T cells producing GM-CSF are also detected in the peripheral blood of infected people. Under conditions where nonhematopoietic production of GM-CSF is deficient, T cell production of GM-CSF is protective and required for control of M. tuberculosis infection. However, GM-CSF is not required for T cell-mediated protection in settings where GM-CSF is produced by other cell types. Finally, using an in vitro macrophage infection model, we demonstrate that GM-CSF inhibition of M. tuberculosis growth requires the expression of peroxisome proliferator-activated receptor gamma (PPARγ). Thus, we identified GM-CSF production as a novel T cell effector function. These findings suggest that a strategy augmenting T cell production of GM-CSF could enhance host resistance against M. tuberculosisIMPORTANCEMycobacterium tuberculosis is the bacterium that causes tuberculosis, the leading cause of death by any infection worldwide. T cells are critical components of the immune response to Mycobacterium tuberculosis While gamma interferon (IFN-γ) is a key effector function of T cells during infection, a failed phase IIb clinical trial and other studies have revealed that IFN-γ production alone is not sufficient to control M. tuberculosis In this study, we demonstrate that CD4+, CD8+, and nonconventional T cells produce GM-CSF during Mycobacterium tuberculosis infection in mice and in the peripheral blood of infected humans. Under conditions where other sources of GM-CSF are absent, T cell production of GM-CSF is protective and is required for control of infection. GM-CSF activation of macrophages to limit bacterial growth requires host expression of the transcription factor PPARγ. The identification of GM-CSF production as a T cell effector function may inform future host-directed therapy or vaccine designs.