Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Appl Opt ; 62(30): 7895-7903, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-38038081

RESUMEN

By exploiting their inherent elasticity, focus-variable silicone lenses shift their focal length reversibly when deformed. Although biconcave and meniscus lenses contribute to optical systems just as well as biconvex lenses, studies primarily revolve around the latter. Thus, we aim to reveal the focal length shifting potential of all aforementioned lens types. Covering a wide parameter range of varying lens curvature radii, we present a coupled mechanical and optical simulation in which a lens deformation is applied. The results show significant differences in focal length shifting effectiveness for different lens types. Within the domains of specific lens types, trends in this effectiveness emerge for different combinations of curvature radii. Matching these radii when incorporating adaptive silicone lenses in optical systems may guide optics engineers toward more effective system designs through this study.

3.
ACS Med Chem Lett ; 14(5): 591-598, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37197473

RESUMEN

Drug resistance mutations emerging during the treatment of non-small cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) inhibitors represent a major challenge in personalized cancer treatment and require constant development of new inhibitors. For the covalent irreversible EGFR inhibitor osimertinib, the predominant resistance mechanism is the acquired C797S mutation, which abolishes the covalent anchor point and thus results in a dramatic loss in potency. In this study, we present next-generation reversible EGFR inhibitors with the potential to overcome this EGFR-C797S resistance mutation. For this, we combined the reversible methylindole-aminopyrimidine scaffold known from osimertinib with the affinity driving isopropyl ester of mobocertinib. By occupying the hydrophobic back pocket, we were able to generate reversible inhibitors with subnanomolar activity against EGFR-L858R/C797S and EGFR-L858R/T790M/C797S with cellular activity on EGFR-L858R/C797S dependent Ba/F3 cells. Additionally, we were able to resolve cocrystal structures of these reversible aminopyrimidines, which will guide further inhibitor design toward C797S-mutated EGFR.

4.
RSC Med Chem ; 13(12): 1540-1548, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36545435

RESUMEN

Ten-eleven translocation dioxygenases (TETs) are the erasers of 5-methylcytosine (mC), the central epigenetic regulator of mammalian DNA. TETs convert mC to three oxidized derivatives with unique physicochemical properties and inherent regulatory potential, and it initializes active demethylation by the base excision repair pathway. Potent small molecule inhibitors would be useful tools to study TET functions by conditional control. To facilitate the discovery of such tools, we here report a high-throughput screening pipeline and its application to screen and validate 31.5k compounds for inhibition of TET2. Using a homogenous fluorescence assay, we discover a novel quinoline-based scaffold that we further validate with an orthogonal semi-high throughput MALDI-MS assay for direct monitoring of substrate turnover. Structure-activity relationship (SAR) studies involving >20 derivatives of this scaffold led to the identification of optimized inhibitors, and together with computational studies suggested a plausible model for its mode of action.

5.
J Med Chem ; 65(9): 6643-6655, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35486541

RESUMEN

Despite the clinical efficacy of epidermal growth factor receptor (EGFR) inhibitors, a subset of patients with non-small cell lung cancer displays insertion mutations in exon20 in EGFR and Her2 with limited treatment options. Here, we present the development and characterization of the novel covalent inhibitors LDC8201 and LDC0496 based on a 1H-pyrrolo[2,3-b]pyridine scaffold. They exhibited intense inhibitory potency toward EGFR and Her2 exon20 insertion mutations as well as selectivity over wild type EGFR and within the kinome. Complex crystal structures with the inhibitors and biochemical and cellular on-target activity document their favorable binding characteristics. Ultimately, we observed tumor shrinkage in mice engrafted with patient-derived EGFR-H773_V774insNPH mutant cells during treatment with LDC8201. Together, these results highlight the potential of covalent pyrrolopyridines as inhibitors to target exon20 insertion mutations.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Mutagénesis Insercional , Mutación , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
6.
ACS Med Chem Lett ; 11(12): 2484-2490, 2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-33335671

RESUMEN

Osimertinib is a third-generation tyrosine kinase inhibitor (TKI) and currently the gold-standard for the treatment of patients suffering from non-small cell lung cancer (NSCLC) harboring T790M-mutated epidermal growth factor receptor (EGFR). The outcome of the treatment, however, is limited by the emergence of the C797S resistance mutation. Allosteric inhibitors have a different mode of action and were developed to overcome this limitation. However, most of these innovative molecules are not effective as a single agent. Recently, mutated EGFR was successfully addressed with osimertinib combined with the allosteric inhibitor JBJ-04-125-02, but surprisingly, structural insights into their binding mode were lacking. Here, we present the first complex crystal structures of mutant EGFR in complex with third-generation inhibitors such as osimertinib and mavelertinib in the presence of simultaneously bound allosteric inhibitors. These structures highlight the possibility of further combinations targeting EGFR and lay the foundation for hybrid inhibitors as next-generation TKIs.

7.
J Med Chem ; 63(20): 11725-11755, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-32931277

RESUMEN

Mutated or amplified Her2 serves as a driver of non-small cell lung cancer or mediates resistance toward the inhibition of its family member epidermal growth factor receptor with small-molecule inhibitors. To date, small-molecule inhibitors targeting Her2 which can be used in clinical routine are lacking, and therefore, the development of novel inhibitors was undertaken. In this study, the well-established pyrrolopyrimidine scaffold was modified with structural motifs identified from a screening campaign with more than 1600 compounds, which were applied against wild-type Her2 and its mutant variant Her2-A775_G776insYVMA. The resulting inhibitors were designed to covalently target a reactive cysteine in the binding site of Her2 and were further optimized by means of structure-based drug design utilizing a set of obtained complex crystal structures. In addition, the analysis of binding kinetics and absorption, distribution, metabolism, and excretion parameters as well as mass spectrometry experiments and western blot analysis substantiated our approach.


Asunto(s)
Diseño de Fármacos , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Pirroles/farmacología , Receptor ErbB-2/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Humanos , Cinética , Modelos Moleculares , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Pirimidinas/síntesis química , Pirimidinas/química , Pirroles/síntesis química , Pirroles/química , Receptor ErbB-2/genética , Receptor ErbB-2/aislamiento & purificación , Relación Estructura-Actividad , Células Tumorales Cultivadas
8.
Chem Sci ; 10(46): 10789-10801, 2019 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-31857889

RESUMEN

Precision medicine has revolutionized the treatment of patients in EGFR driven non-small cell lung cancer (NSCLC). Targeted drugs show high response rates in genetically defined subsets of cancer patients and markedly increase their progression-free survival as compared to conventional chemotherapy. However, recurrent acquired drug resistance limits the success of targeted drugs in long-term treatment and requires the constant development of novel efficient inhibitors of drug resistant cancer subtypes. Herein, we present covalent inhibitors of the drug resistant gatekeeper mutant EGFR-L858R/T790M based on the pyrrolopyrimidine scaffold. Biochemical and cellular characterization, as well as kinase selectivity profiling and western blot analysis, substantiate our approach. Moreover, the developed compounds possess high activity against multi drug resistant EGFR-L858R/T790M/C797S in biochemical assays due to their highly reversible binding character, that was revealed by characterization of the binding kinetics. In addition, we present the first X-ray crystal structures of covalent inhibitors in complex with C797S-mutated EGFR which provide detailed insight into their binding mode.

9.
ACS Med Chem Lett ; 9(8): 779-782, 2018 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-30128066

RESUMEN

The first evidence of osimertinib resistance mediated by the epidermal growth factor receptor (EGFR) mutation C797S was reported three years ago. Since then, no major breakthroughs have been achieved to target the clinically relevant mutant variant that impedes covalent bond formation with irreversible EGFR inhibitors. Although several biochemically active compounds have been described, only a few inhibitors that potently act on the cellular level or in vivo have been introduced so far. Herein, we give an overview of current approaches in the field and highlight the challenges that need to be addressed in future research projects to overcome the C797S-mediated drug resistance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA