Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Curr Res Struct Biol ; 7: 100122, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38188542

RESUMEN

Over the years, extensive research has highlighted the functional roles of small nucleolar RNAs in various biological processes associated with the development of complex human diseases. Therefore, understanding the existing relationships between different snoRNAs and diseases is crucial for advancing disease diagnosis and treatment. However, classical biological experiments for identifying snoRNA-disease associations are expensive and time-consuming. Therefore, there is an urgent need for cost-effective computational techniques that can enhance the efficiency and accuracy of prediction. While several computational models have already been proposed, many suffer from limitations and suboptimal performance. In this study, we introduced a novel Graph Neural Network-based (GNN) classification model, called SAGESDA, which is implemented through the GraphSAGE architecture with attention for the prediction of snoRNA-disease associations. The classifier leverages local neighbouring nodes in a heterogeneous network to generate new node embeddings through message passing. The mini-batch gradient descent technique was applied to divide the graph into smaller sub-graphs, which enhances the model's accuracy, speed and scalability. With these advancements, SAGESDA attained an area under the receiver operating characteristic (ROC) curve (AUC) of 0.92 using the standard dot product classifier, surpassing previous related studies. This notable performance demonstrates that SAGESDA is a promising model for predicting unknown snoRNA-disease associations with high accuracy. The SAGESDA implementation details can be obtained from https://github.com/momanyibiffon/SAGESDA.git.

2.
Comput Biol Med ; 163: 107165, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37315383

RESUMEN

MicroRNAs have a significant role in the emergence of various human disorders. Consequently, it is essential to understand the existing interactions between miRNAs and diseases, as this will help scientists better study and comprehend the diseases' biological mechanisms. Findings can be employed as biomarkers or drug targets to advance the detection, diagnosis, and treatment of complex human disorders by foretelling possible disease-related miRNAs. This study proposed a computational model for predicting potential miRNA-disease associations called the Collaborative Filtering Neighborhood-based Classification Model (CFNCM), in light of the shortcomings of conventional and biological experiments, which are expensive and time-consuming. The model generated integrated miRNA and disease similarity matrices using the validated associations and miRNA and disease similarity information and used them as the input features for CFNCM. To produce class labels, we first determined the association scores for brand-new pairs using user-based collaborative filtering. With zero as the threshold, the associations with scores >0 were labelled 1, indicating a potential positive association, otherwise, it is marked as 0. Then, we developed classification models using various machine-learning algorithms. By comparison, we discovered that the support vector machine (SVM) produced the best AUC of 0.96 with 10-fold cross-validation through the GridSearchCV technique for identifying optimal parameter values. In addition, the models were evaluated and verified by analyzing the top 50 breast and lung neoplasms-related miRNAs, of which 46 and 47 associations were verified in two authoritative databases, dbDEMC and miR2Disease.


Asunto(s)
Enfermedad , MicroARNs , Máquina de Vectores de Soporte , Características del Vecindario , MicroARNs/genética , MicroARNs/metabolismo , Simulación por Computador , Humanos , Enfermedad/clasificación , Algoritmos
3.
Comput Struct Biotechnol J ; 21: 2253-2261, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37035551

RESUMEN

Hormone binding proteins (HBPs) belong to the group of soluble carrier proteins. These proteins selectively and non-covalently interact with hormones and promote growth hormone signaling in human and other animals. The HBPs are useful in many medical and commercial fields. Thus, the identification of HBPs is very important because it can help to discover more details about hormone binding proteins. Meanwhile, the experimental methods are time-consuming and expensive for hormone binding proteins recognition. Computational prediction methods have played significant roles in the correct recognition of hormone binding proteins with the use of sequence information and ML algorithms. In this review, we compared and assessed the implementation of ML-based tools in recognition of HBPs in a unique way. We hope that this study will give enough awareness and knowledge for research on HBPs.

4.
Front Biosci (Landmark Ed) ; 27(3): 84, 2022 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-35345316

RESUMEN

BACKGROUND: Lipocalin belongs to the calcyin family, and its sequence length is generally between 165 and 200 residues. They are mainly stable and multifunctional extracellular proteins. Lipocalin plays an important role in several stress responses and allergic inflammations. Because the accurate identification of lipocalins could provide significant evidences for the study of their function, it is necessary to develop a machine learning-based model to recognize lipocalin. METHODS: In this study, we constructed a prediction model to identify lipocalin. Their sequences were encoded by six types of features, namely amino acid composition (AAC), composition of k-spaced amino acid pairs (CKSAAP), pseudo amino acid composition (PseAAC), Geary correlation (GD), normalized Moreau-Broto autocorrelation (NMBroto) and composition/transition/distribution (CTD). Subsequently, these features were optimized by using feature selection techniques. A classifier based on random forest was trained according to the optimal features. RESULTS: The results of 10-fold cross-validation showed that our computational model would classify lipocalins with accuracy of 95.03% and area under the curve of 0.987. On the independent dataset, our computational model could produce the accuracy of 89.90% which was 4.17% higher than the existing model. CONCLUSIONS: In this work, we developed an advanced computational model to discriminate lipocalin proteins from non-lipocalin proteins. In the proposed model, protein sequences were encoded by six descriptors. Then, feature selection was performed to pick out the best features which could produce the maximum accuracy. On the basis of the best feature subset, the RF-based classifier can obtained the best prediction results.


Asunto(s)
Inteligencia Artificial , Lipocalinas , Aminoácidos , Biología Computacional , Lipocalinas/química , Aprendizaje Automático , Proteínas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA