Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
2.
J Eukaryot Microbiol ; 65(4): 475-483, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29265676

RESUMEN

A culture of a unicellular heterotrophic eukaryote was established from pollen-baited seawater acquired from the nearshore environment in Tromsø, Norway. Light microscopy revealed the production of ectoplasmic nets and reproduction by biflagellated zoospores, as well as binary division. After culturing and subsequent nucleotide extraction, database queries of the isolate's 18S small ribosomal subunit coding region identified closest molecular affinity to Aplanochytrium haliotidis, a pathogen of abalone. Testing of phylogenetic hypotheses consistently grouped our unknown isolate and A. haliotidis among the homoplasious thraustochytrids. Transmission electron microscopy revealed complex cell walls comprised of electron-dense lamella that formed protuberances, some associated with bothrosomes. Co-culturing experiments with the marine fungus Penicillium brevicompactum revealed prolonged interactions with hyphal strands. Based on the combined information acquired from electron microscopy, life history information, and phylogenetic testing, we describe our unknown isolate as a novel species. To resolve molecular polyphyly within the aplanochytrids, we erect a gen. nov. that circumscribes our novel isolate and the former A. haliotidis within the thraustochytrids.


Asunto(s)
Estramenopilos/genética , Procesos Heterotróficos , Microscopía Electrónica de Transmisión , Noruega , Filogenia , Agua de Mar/microbiología , Estramenopilos/clasificación , Estramenopilos/aislamiento & purificación , Estramenopilos/ultraestructura
3.
Environ Microbiol ; 19(2): 475-484, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27207498

RESUMEN

Fungi are important parasites of primary producers and nutrient cyclers in aquatic ecosystems. In the Pacific-Arctic domain, fungal parasitism is linked to light intensities and algal stress that can elevate disease incidence on algae and reduce diatom concentrations. Fungi are vastly understudied in the marine realm and knowledge of their function is constrained by the current understanding of fungal distribution and drivers on global scales. To investigate the spatial distribution of fungi in the western Arctic and sub-Arctic, we used high throughput methods to sequence 18S rRNA, cloned and sequenced 28S rRNA and microscopically counted chytrid-infected diatoms. We identified a broad distribution of fungal taxa predominated by Chytridiomycota and Dikarya. Phylogenetic analysis of our Chytridiomycota clones placed Arctic marine fungi sister to the order Lobulomycetales. This clade of fungi predominated in fungal communities under ice with low snowpack. Microscopic examination of fixed seawater and sea ice samples revealed chytrids parasitizing diatoms collected across the Arctic that notably infected 25% of a single diatom species in the Bering Sea. The Pezizomycotina comprised > 95% of eukaryotic sequence reads in Greenland, providing preliminary evidence for osmotrophs being a substitute for algae as the base of food webs.


Asunto(s)
Diatomeas/microbiología , Hongos/aislamiento & purificación , Agua de Mar/microbiología , Regiones Árticas , Quitridiomicetos/genética , Quitridiomicetos/aislamiento & purificación , Cadena Alimentaria , Hongos/clasificación , Hongos/genética , Groenlandia , Secuenciación de Nucleótidos de Alto Rendimiento , Cubierta de Hielo , Filogenia , ARN Ribosómico 18S/genética , ARN Ribosómico 28S/genética , Análisis de Secuencia de ADN
4.
Oecologia ; 174(3): 699-712, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24276772

RESUMEN

We determined fatty acid (FA) profiles and carbon stable isotopic composition of individual FAs (δ(13)CFA values) from sea ice particulate organic matter (i-POM) and pelagic POM (p-POM) in the Bering Sea during maximum ice extent, ice melt, and ice-free conditions in 2010. Based on FA biomarkers, differences in relative composition of diatoms, dinoflagellates, and bacteria were inferred for i-POM versus p-POM and for seasonal succession stages in p-POM. Proportions of diatom markers were higher in i-POM (16:4n-1, 6.6-8.7%; 20:5n-3, 19.6-25.9%) than in p-POM (16:4n-1, 1.2-4.0%; 20:5n-3, 5.5-14.0%). The dinoflagellate marker 22:6n-3/20:5n-3 was highest in p-POM. Bacterial FA concentration was higher in the bottom 1 cm of sea ice (14-245 µg L(-1)) than in the water column (0.6-1.7 µg L(-1)). Many i-POM δ(13)C(FA) values were higher (up to ~10‰) than those of p-POM, and i-POM δ(13)C(FA) values increased with day length. The higher i-POM δ(13)C(FA) values are most likely related to the reduced dissolved inorganic carbon (DIC) availability within the semi-closed sea ice brine channel system. Based on a modified Rayleigh equation, the fraction of sea ice DIC fixed in i-POM ranged from 12 to 73%, implying that carbon was not limiting for primary productivity in the sympagic habitat. These differences in FA composition and δ(13)C(FA) values between i-POM and p-POM will aid efforts to track the proportional contribution of sea ice algal carbon to higher trophic levels in the Bering Sea and likely other Arctic seas.


Asunto(s)
Ácidos Grasos/análisis , Cadena Alimentaria , Cubierta de Hielo/química , Cubierta de Hielo/microbiología , Material Particulado/química , Regiones Árticas , Carbono , Isótopos de Carbono/análisis , Cianobacterias/fisiología , Diatomeas/fisiología , Dinoflagelados/fisiología , Ecosistema , Isótopos de Nitrógeno/análisis , Océanos y Mares , Estaciones del Año
5.
FEMS Microbiol Ecol ; 100(1)2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38111220

RESUMEN

Climate change is altering patterns of precipitation, cryosphere thaw, and land-ocean influxes, affecting understudied Arctic estuarine tidal flats. These transitional zones between terrestrial and marine systems are hotspots for biogeochemical cycling, often driven by microbial processes. We investigated surface sediment bacterial community composition and function from May to September along a river-intertidal-subtidal-fjord gradient. We paired metabarcoding of in situ communities with in vitro carbon-source utilization assays. Bacterial communities differed in space and time, alongside varying environmental conditions driven by local seasonal processes and riverine inputs, with salinity emerging as the dominant structuring factor. Terrestrial and riverine taxa were found throughout the system, likely transported with runoff. In vitro assays revealed sediment bacteria utilized a broader range of organic matter substrates when incubated in fresh and brackish water compared to marine water. These results highlight the importance of salinity for ecosystem processes in these dynamic tidal flats, with the highest potential for utilization of terrestrially derived organic matter likely limited to tidal flat areas (and times) where sediments are permeated by freshwater. Our results demonstrate that intertidal flats must be included in future studies on impacts of increased riverine discharge and transport of terrestrial organic matter on coastal carbon cycling in a warming Arctic.


Asunto(s)
Ecosistema , Sedimentos Geológicos , Sedimentos Geológicos/microbiología , Bacterias , Estuarios , Carbono
6.
Front Microbiol ; 12: 614634, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33717004

RESUMEN

The Arctic is experiencing dramatic changes including increases in precipitation, glacial melt, and permafrost thaw, resulting in increasing freshwater runoff to coastal waters. During the melt season, terrestrial runoff delivers carbon- and nutrient-rich freshwater to Arctic coastal waters, with unknown consequences for the microbial communities that play a key role in determining the cycling and fate of terrestrial matter at the land-ocean interface. To determine the impacts of runoff on coastal microbial (bacteria and archaea) communities, we investigated changes in pelagic microbial community structure between the early (June) and late (August) melt season in 2018 in the Isfjorden system (Svalbard). Amplicon sequences of the 16S rRNA gene were generated from water column, river and sediment samples collected in Isfjorden along fjord transects from shallow river estuaries and glacier fronts to the outer fjord. Community shifts were investigated in relation to environmental gradients, and compared to river and marine sediment microbial communities. We identified strong temporal and spatial reorganizations in the structure and composition of microbial communities during the summer months in relation to environmental conditions. Microbial diversity patterns highlighted a reorganization from rich communities in June toward more even and less rich communities in August. In June, waters enriched in dissolved organic carbon (DOC) provided a niche for copiotrophic taxa including Sulfitobacter and Octadecabacter. In August, lower DOC concentrations and Atlantic water inflow coincided with a shift toward more cosmopolitan taxa usually associated with summer stratified periods (e.g., SAR11 Clade Ia), and prevalent oligotrophic marine clades (OM60, SAR92). Higher riverine inputs of dissolved inorganic nutrients and suspended particulate matter also contributed to spatial reorganizations of communities in August. Sentinel taxa of this late summer fjord environment included taxa from the class Verrucomicrobiae (Roseibacillus, Luteolibacter), potentially indicative of a higher fraction of particle-attached bacteria. This study highlights the ecological relevance of terrestrial runoff for Arctic coastal microbial communities and how its impacts on biogeochemical conditions may make these communities susceptible to climate change.

7.
J Plankton Res ; 42(1): 73-86, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32025067

RESUMEN

Apherusa glacialis is a common, sea ice-associated amphipod found throughout the Arctic Ocean and has long been considered permanently associated with the sea ice habitat. However, pelagic occurrences of A. glacialis have also been reported. It was recently suggested that A. glacialis overwinters at depth within the Atlantic-water inflow near Svalbard, to avoid being exported out of the Arctic Ocean through the Fram Strait. This study collated pelagic occurrence records over a 71-year period and found that A. glacialis was consistently found away from its presumed sea ice habitat on a pan-Arctic scale, in different depths and water masses. In the Svalbard region, A. glacialis was found in Atlantic Water both in winter and summer. Additionally, we analyzed A. glacialis size distributions throughout the year, collected mostly from sea ice, in order to elucidate potential life cycle strategies. The majority of young-of-the-year A. glacialis was found in the sea ice habitat during spring, supporting previous findings. Data on size distributions and sex ratios suggest a semelparous lifestyle. A synchronous seasonal vertical migration was not evident, but our data imply a more complex life history than previously assumed. We provide evidence that A. glacialis can no longer be regarded as an autochthonous sympagic species.

8.
Photosynth Res ; 102(1): 53-66, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19728139

RESUMEN

Photosynthetic parameters of phytoplankton and sea ice algae from landfast sea ice of the Chukchi Sea off Point Barrow, Alaska, were assessed in spring 2005 and winter through spring 2006 using Pulse Amplitude Modulated (PAM) fluorometry including estimates of maximum quantum efficiency (F(v)/F(m)), maximum relative electron transport rate (rETR(max)), photosynthetic efficiency (alpha), and the photoadaptive index (E(k)). The use of centrifuged brine samples allowed to document vertical gradients in ice algal acclimation with 5 cm vertical resolution for the first time. Bottom ice algae (0-5 cm from ice-water interface) expressed low F(v)/F(m) (0.331-0.426) and low alpha (0.098-0.130 (micromol photons m(-2)s(-1))(-1)) in December. F(v)/F(m) and alpha increased in March and May (0.468-0.588 and 0.141-0.438 (micromol photons m(-2)s(-1))(-1), respectively) indicating increased photosynthetic activity. In addition, increases in rETR(max) (3.3-16.4 a.u.) and E(k) (20-88 micromol photons m(-2) s(-1)) from December to May illustrates a higher potential for primary productivity as communities become better acclimated to under-ice light conditions. In conclusion,photosynthetic performance by ice algae (as assessed by PAM fluorometry) was tightly linked to sea ice salinity, temperature, and inorganic nutrient concentrations (mainly nitrogen).


Asunto(s)
Eucariontes/fisiología , Hielo , Fotosíntesis/fisiología , Adaptación Fisiológica , Regiones Árticas , Diatomeas/metabolismo , Transporte de Electrón , Geografía , Compuestos Inorgánicos/metabolismo , Pigmentos Biológicos/metabolismo , Estaciones del Año
9.
Ecol Appl ; 18(2 Suppl): S77-96, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18494364

RESUMEN

This review provides an overview of prey preferences of seven core Arctic marine mammal species (AMM) and four non-core species on a pan-Arctic scale with regional examples. Arctic marine mammal species exploit prey resources close to the sea ice, in the water column, and at the sea floor, including lipid-rich pelagic and benthic crustaceans and pelagic and ice-associated schooling fishes such as capelin and Arctic cod. Prey preferred by individual species range from cephalopods and benthic bivalves to Greenland halibut. A few AMM are very prey-, habitat-, and/or depth-specific (e.g., walrus, polar bear), while others are rather opportunistic and, therefore, likely less vulnerable to change (e.g., beluga, bearded seal). In the second section, we review prey distribution patterns and current biomass hotspots in the three major physical realms (sea ice, water column, and seafloor), highlighting relations to environmental parameters such as advection patterns and the sea ice regime. The third part of the contribution presents examples of documented changes in AMM prey distribution and biomass and, subsequently, suggests three potential scenarios of large-scale biotic change, based on published observations and predictions of environmental change. These scenarios discuss (1) increased pelagic primary and, hence, secondary production, particularly in the central Arctic, during open-water conditions in the summer (based on surplus nutrients currently unutilized); (2) reduced benthic and pelagic biomass in coastal/shelf areas (due to increased river runoff and, hence, changed salinity and turbidity conditions); and (3) increased pelagic grazing and recycling in open-water conditions at the expense of the current tight benthic-pelagic coupling in part of the ice-covered shelf regions (due to increased pelagic consumption vs. vertical flux). Should those scenarios hold true, pelagic-feeding and generalist AMM might be advantaged, while the range for benthic shelf-feeding, ice-dependent AMM such as walrus would decrease. New pelagic feeding grounds may open up to AMM and subarctic marine mammal species in the High Arctic basins while nearshore waters might provide less abundant food in the future.


Asunto(s)
Abastecimiento de Alimentos , Mamíferos , Biología Marina , Animales , Regiones Árticas , Mamíferos/fisiología , Conducta Predatoria , Especificidad de la Especie
10.
Ecol Evol ; 8(4): 2350-2364, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29468049

RESUMEN

Arctic sea ice provides microhabitats for biota that inhabit the liquid-filled network of brine channels and the ice-water interface. We used meta-analysis of 23 published and unpublished datasets comprising 721 ice cores to synthesize the variability in composition and abundance of sea ice meiofauna at spatial scales ranging from within a single ice core to pan-Arctic and seasonal scales. Two-thirds of meiofauna individuals occurred in the bottom 10 cm of the ice. Locally, replicate cores taken within meters of each other were broadly similar in meiofauna composition and abundance, while those a few km apart varied more; 75% of variation was explained by station. At the regional scale (Bering Sea first-year ice), meiofauna abundance varied over two orders of magnitude. At the pan-Arctic scale, the same phyla were found across the region, with taxa that have resting stages or tolerance to extreme conditions (e.g., nematodes and rotifers) dominating abundances. Meroplankton, however, was restricted to nearshore locations and landfast sea ice. Light availability, ice thickness, and distance from land were significant predictor variables for community composition on different scales. On a seasonal scale, abundances varied broadly for all taxa and in relation to the annual ice algal bloom cycle in both landfast and pack ice. Documentation of ice biota composition, abundance, and natural variability is critical for evaluating responses to decline in Arctic sea ice. Consistent methodology and protocols must be established for comparability of meiofauna monitoring across the Arctic. We recommend to (1) increase taxonomic resolution of sea ice meiofauna, (2) focus sampling on times of peak abundance when seasonal sampling is impossible, (3) include the bottom 30 cm of ice cores rather than only bottom 10 cm, (4) preserve specimens for molecular analysis to improve taxonomic resolution, and (5) formulate a trait-based framework that relates to ecosystem functioning.

11.
Protist ; 166(3): 310-22, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26046621

RESUMEN

The genus Sphaeroforma previously encompassed organisms isolated exclusively from animal symbionts in marine systems. The first saprotrophic sphaeroformids (Mesomycetozoea) isolated from non-animal hosts are described here. Sphaeroforma sirkka and S. napiecek are also the first species in the genus possessing endogenous DNA-containing motile propagules and central vacuoles, traits that have previously guided morphological differentiation of sphaeroformids from the genus Creolimax. Phylogenetic analysis of DNA sequences from the 18S rRNA and the ITS1-5.8S--ITS2 loci firmly place S. sirkka and S. napiecek within Sphaeroforma, extending the number of known species to six within this genus. The discovery of these species increases the geographical range, cellular variation and life history complexity of the sphaeroformids.


Asunto(s)
Organismos Acuáticos/clasificación , Mesomycetozoea/clasificación , Filogenia , Alaska , Animales , Organismos Acuáticos/genética , Organismos Acuáticos/aislamiento & purificación , Organismos Acuáticos/ultraestructura , ADN Ribosómico/genética , Mesomycetozoea/genética , Mesomycetozoea/aislamiento & purificación , Mesomycetozoea/ultraestructura , Microscopía Electrónica de Transmisión , Océanos y Mares , Especificidad de la Especie
12.
Oecologia ; 158(1): 11-22, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18709389

RESUMEN

Food web studies based on stable C and N isotope ratios usually assume isotopic equilibrium between a consumer and its diet. In the Arctic, strong seasonality in food availability often leads to diet switching, resulting in a consumer's isotopic composition to be in flux between different food sources. Experimental work investigating the time course and dynamics of isotopic change in Arctic fauna has been lacking, although these data are crucial for accurate interpretation of food web relationships. We investigated seasonal (ice-covered spring vs. ice-free summer) and temperature (1 vs. 4 degrees C) effects on growth and stable C and N isotopic change in the common nearshore Arctic amphipod Onisimus litoralis following a diet switch and while fasting in the laboratory. In spring we found no significant temperature effect on N turnover [half-life (HL) estimates: HL-N = 20.4 at 4 degrees C, 22.4 days at 1 degrees C] and a nonsignificant trend for faster growth and C turnover at the higher temperature (HL-C = 13.9 at 4 degrees C, 18.7 days at 1 degrees C). A strong seasonal effect was found, with significantly slower growth and C and N turnover in the ice-free summer period (HL-N = 115.5 days, HL-C = 77.0 days). Contrary to previous studies, metabolic processes rather than growth accounted for most of the change in C and N isotopic composition (84-89 and 67-77%, respectively). This study provides the first isotopic change and metabolic turnover rates for an Arctic marine invertebrate and demonstrates the risk of generalizing turnover rates based on taxon, physiology, and environment. Our results highlight the importance of experimental work to determine turnover rates for species of interest.


Asunto(s)
Anfípodos/metabolismo , Carbono/metabolismo , Dieta , Eucariontes/metabolismo , Nitrógeno/metabolismo , Anfípodos/crecimiento & desarrollo , Animales , Regiones Árticas , Isótopos de Carbono/metabolismo , Cadena Alimentaria , Cubierta de Hielo , Isótopos de Nitrógeno/metabolismo , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA