Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chem Res Toxicol ; 26(12): 1893-903, 2013 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-24134150

RESUMEN

Exposure to arsenic affects large human populations worldwide and has been associated with a long list of human diseases, including skin, bladder, lung, and liver cancers, diabetes, and cardiovascular disorders. In addition, there are large individual differences in susceptibility to arsenic-induced diseases, which are frequently associated with different patterns of arsenic metabolism. Several underlying mechanisms, such as genetic polymorphisms and epigenetics, have been proposed, as these factors closely impact the individuals' capacity to metabolize arsenic. In this context, the role of the gut microbiome in directly metabolizing arsenic and triggering systemic responses in diverse organs raises the possibility that perturbations of the gut microbial communities affect the spectrum of metabolized arsenic species and subsequent toxicological effects. In this study, we used an animal model with an altered gut microbiome induced by bacterial infection, 16S rRNA gene sequencing, and inductively coupled plasma mass spectrometry-based arsenic speciation to examine the effect of gut microbiome perturbations on the biotransformation of arsenic. Metagenomics sequencing revealed that bacterial infection significantly perturbed the gut microbiome composition in C57BL/6 mice, which in turn resulted in altered spectra of arsenic metabolites in urine, with inorganic arsenic species and methylated and thiolated arsenic being perturbed. These data clearly illustrated that gut microbiome phenotypes significantly affected arsenic metabolic reactions, including reduction, methylation, and thiolation. These findings improve our understanding of how infectious diseases and environmental exposure interact and may also provide novel insight regarding the gut microbiome composition as a new risk factor of individual susceptibility to environmental chemicals.


Asunto(s)
Arsénico/metabolismo , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/microbiología , Infecciones por Helicobacter/metabolismo , Infecciones por Helicobacter/microbiología , Helicobacter/fisiología , Animales , Modelos Animales de Enfermedad , Infecciones por Helicobacter/patología , Humanos , Ratones , Ratones Endogámicos C57BL
2.
Environ Health Perspect ; 122(3): 284-91, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24413286

RESUMEN

BACKGROUND: The human intestine is host to an enormously complex, diverse, and vast microbial community-the gut microbiota. The gut microbiome plays a profound role in metabolic processing, energy production, immune and cognitive development, epithelial homeostasis, and so forth. However, the composition and diversity of the gut microbiome can be readily affected by external factors, which raises the possibility that exposure to toxic environmental chemicals leads to gut microbiome alteration, or dysbiosis. Arsenic exposure affects large human populations worldwide and has been linked to a number of diseases, including cancer, diabetes, and cardiovascular disorders. OBJECTIVES: We investigated the impact of arsenic exposure on the gut microbiome composition and its metabolic profiles. METHODS: We used an integrated approach combining 16S rRNA gene sequencing and mass spectrometry-based metabolomics profiling to examine the functional impact of arsenic exposure on the gut microbiome. RESULTS: 16S rRNA gene sequencing revealed that arsenic significantly perturbed the gut microbiome composition in C57BL/6 mice after exposure to 10 ppm arsenic for 4 weeks in drinking water. Moreover, metabolomics profiling revealed a concurrent effect, with a number of gut microflora-related metabolites being perturbed in multiple biological matrices. CONCLUSIONS: Arsenic exposure not only alters the gut microbiome community at the abundance level but also substantially disturbs its metabolic profiles at the function level. These findings may provide novel insights regarding perturbations of the gut microbiome and its functions as a potential new mechanism by which arsenic exposure leads to or exacerbates human diseases. CITATION: Lu K, Abo RP, Schlieper KA, Graffam ME, Levine S, Wishnok JS, Swenberg JA, Tannenbaum SR, Fox JG. 2014. Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: an integrated metagenomics and metabolomics analysis. Environ Health Perspect 122:284-291; http://dx.doi.org/10.1289/ehp.1307429.


Asunto(s)
Arsénico/toxicidad , Tracto Gastrointestinal/microbiología , Metagenoma/efectos de los fármacos , Microbiota/efectos de los fármacos , Animales , Cromatografía Liquida , Código de Barras del ADN Taxonómico , Femenino , Tracto Gastrointestinal/efectos de los fármacos , Espectrometría de Masas , Metaboloma , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Análisis de Secuencia de ADN , Organismos Libres de Patógenos Específicos
3.
PLoS One ; 7(8): e42842, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22952616

RESUMEN

The recently identified type VI secretion system (T6SS) of proteobacteria has been shown to promote pathogenicity, competitive advantage over competing microorganisms, and adaptation to environmental perturbation. By detailed phenotypic characterization of loss-of-function mutants, in silico, in vitro and in vivo analyses, we provide evidence that the enteric pathogen, Campylobacter jejuni, possesses a functional T6SS and that the secretion system exerts pleiotropic effects on two crucial processes--survival in a bile salt, deoxycholic acid (DCA), and host cell adherence and invasion. The expression of T6SS during initial exposure to the upper range of physiological levels of DCA (0.075%-0.2%) was detrimental to C. jejuni proliferation, whereas down-regulation or inactivation of T6SS enabled C. jejuni to resist this effect. The C. jejuni multidrug efflux transporter gene, cmeA, was significantly up-regulated during the initial exposure to DCA in the wild type C. jejuni relative to the T6SS-deficient strains, suggesting that inhibition of proliferation is the consequence of T6SS-mediated DCA influx. A sequential modulation of the efflux transporter activity and the T6SS represents, in part, an adaptive mechanism for C. jejuni to overcome this inhibitory effect, thereby ensuring its survival. C. jejuni T6SS plays important roles in host cell adhesion and invasion as T6SS inactivation resulted in a reduction of adherence to and invasion of in vitro cell lines, while over-expression of a hemolysin co-regulated protein, which encodes a secreted T6SS component, greatly enhanced these processes. When inoculated into B6.129P2-IL-10(tm1Cgn) mice, the T6SS-deficient C. jejuni strains did not effectively establish persistent colonization, indicating that T6SS contributes to colonization in vivo. Taken together, our data demonstrate the importance of bacterial T6SS in host cell adhesion, invasion, colonization and, for the first time to our knowledge, adaptation to DCA, providing new insights into the role of T6SS in C. jejuni pathogenesis.


Asunto(s)
Sistemas de Secreción Bacterianos , Infecciones por Campylobacter/microbiología , Campylobacter jejuni/fisiología , Ácido Desoxicólico/farmacología , Agar/química , Animales , Proteínas Bacterianas/metabolismo , Campylobacter jejuni/metabolismo , Adhesión Celular , Proliferación Celular , Genes Bacterianos , Prueba de Complementación Genética , Proteínas Hemolisinas/metabolismo , Interleucina-10/metabolismo , Ratones , Ratones Transgénicos , Familia de Multigenes , Mutación , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA