Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 110(3): 1000-5, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23277544

RESUMEN

A perceived recent increase in global jellyfish abundance has been portrayed as a symptom of degraded oceans. This perception is based primarily on a few case studies and anecdotal evidence, but a formal analysis of global temporal trends in jellyfish populations has been missing. Here, we analyze all available long-term datasets on changes in jellyfish abundance across multiple coastal stations, using linear and logistic mixed models and effect-size analysis to show that there is no robust evidence for a global increase in jellyfish. Although there has been a small linear increase in jellyfish since the 1970s, this trend was unsubstantiated by effect-size analysis that showed no difference in the proportion of increasing vs. decreasing jellyfish populations over all time periods examined. Rather, the strongest nonrandom trend indicated jellyfish populations undergo larger, worldwide oscillations with an approximate 20-y periodicity, including a rising phase during the 1990s that contributed to the perception of a global increase in jellyfish abundance. Sustained monitoring is required over the next decade to elucidate with statistical confidence whether the weak increasing linear trend in jellyfish after 1970 is an actual shift in the baseline or part of an oscillation. Irrespective of the nature of increase, given the potential damage posed by jellyfish blooms to fisheries, tourism, and other human industries, our findings foretell recurrent phases of rise and fall in jellyfish populations that society should be prepared to face.


Asunto(s)
Periodicidad , Escifozoos/crecimiento & desarrollo , Animales , Cambio Climático , Cnidarios/crecimiento & desarrollo , Ctenóforos/crecimiento & desarrollo , Bases de Datos Factuales , Fenómenos Ecológicos y Ambientales , Ecosistema , Humanos , Dinámica Poblacional , Factores de Tiempo , Urocordados/crecimiento & desarrollo , Zooplancton/crecimiento & desarrollo
2.
Proc Natl Acad Sci U S A ; 108(25): 10225-30, 2011 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-21646531

RESUMEN

Jellyfish blooms occur in many estuarine and coastal regions and may be increasing in their magnitude and extent worldwide. Voracious jellyfish predation impacts food webs by converting large quantities of carbon (C), fixed by primary producers and consumed by secondary producers, into gelatinous biomass, which restricts C transfer to higher trophic levels because jellyfish are not readily consumed by other predators. In addition, jellyfish release colloidal and dissolved organic matter (jelly-DOM), and could further influence the functioning of coastal systems by altering microbial nutrient and DOM pathways, yet the links between jellyfish and bacterioplankton metabolism and community structure are unknown. Here we report that jellyfish released substantial quantities of extremely labile C-rich DOM, relative to nitrogen (25.6 ± 31.6 C:1N), which was quickly metabolized by bacterioplankton at uptake rates two to six times that of bulk DOM pools. When jelly-DOM was consumed it was shunted toward bacterial respiration rather than production, significantly reducing bacterial growth efficiencies by 10% to 15%. Jelly-DOM also favored the rapid growth and dominance of specific bacterial phylogenetic groups (primarily γ-proteobacteria) that were rare in ambient waters, implying that jelly-DOM was channeled through a small component of the in situ microbial assemblage and thus induced large changes in community composition. Our findings suggest major shifts in microbial structure and function associated with jellyfish blooms, and a large detour of C toward bacterial CO(2) production and away from higher trophic levels. These results further suggest fundamental transformations in the biogeochemical functioning and biological structure of food webs associated with jellyfish blooms.


Asunto(s)
Bacterias/metabolismo , Carbono/metabolismo , Ctenóforos/metabolismo , Ecosistema , Escifozoos/metabolismo , Agua de Mar/química , Agua de Mar/microbiología , Animales , Biomasa , Cadena Alimentaria , Nitrógeno/metabolismo , Microbiología del Agua
3.
Environ Sci Technol ; 46(16): 8799-807, 2012 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-22809266

RESUMEN

Following the Deepwater Horizon disaster, the effect of weathering on surface slicks, oil-soaked sands, and oil-covered rocks and boulders was studied for 18 months. With time, oxygen content increased in the hydrocarbon residues. Furthermore, a weathering-dependent increase of an operationally defined oxygenated fraction relative to the saturated and aromatic fractions was observed. This oxygenated fraction made up >50% of the mass of weathered samples, had an average carbon oxidation state of -1.0, and an average molecular formula of (C(5)H(7)O)(n). These oxygenated hydrocarbon residues were devoid of natural radiocarbon, confirming a fossil source and excluding contributions from recent photosynthate. The incorporation of oxygen into the oil's hydrocarbons, which we refer to as oxyhydrocarbons, was confirmed from the detection of hydroxyl and carbonyl functional groups and the identification of long chain (C(10)-C(32)) carboxylic acids as well as alcohols. On the basis of the diagnostic ratios of alkanes and polycyclic aromatic hydrocarbons, and the context within which these samples were collected, we hypothesize that biodegradation and photooxidation share responsibility for the accumulation of oxygen in the oil residues. These results reveal that molecular-level transformations of petroleum hydrocarbons lead to increasing amounts of, apparently recalcitrant, oxyhydrocarbons that dominate the solvent-extractable material from oiled samples.


Asunto(s)
Oxígeno/química , Contaminación por Petróleo , Petróleo , Cromatografía de Gases , Espectroscopía Infrarroja por Transformada de Fourier
4.
Adv Mar Biol ; 63: 133-96, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22877612

RESUMEN

Large population fluctuations of jellyfish occur over a variety of temporal scales, from weekly to seasonal, inter-annual and even decadal, with some regions of the world reported to be experiencing persistent seasonal bloom events. Recent jellyfish research has focussed on understanding the causes and consequences of these population changes, with the vast majority of studies considering the effect of changing environmental variables only on the pelagic medusa. But many of the bloom-forming species are members of the Scyphozoa with complex metagenic life cycles consisting of a sexually reproducing pelagic medusa and asexually reproducing benthic polyp. Recruitment success during the juvenile (planula, polyp and ephyrae) stages of the life cycle can have a major effect on the abundance of the adult (medusa) population, but until very recently, little was known about the ecology of the polyp or scyphistoma phase of the scyphozoan life cycle. The aim of this review is to synthesise the current state of knowledge of polyp ecology by examining (1) the recruitment and metamorphosis of planulae larvae into polyps, (2) survival and longevity of polyps, (3) expansion of polyp populations via asexual propagation and (4) strobilation and recruitment of ephyrae (juvenile medusae). Where possible, comparisons are made with the life histories of other bentho-pelagic marine invertebrates so that further inferences can be made. Differences between tropical and temperate species are highlighted and related to climate change, and populations of the same species (in particular Aurelia aurita) inhabiting different habitats within its geographic range are compared. The roles that polyps play in ensuring the long-term survival of jellyfish populations as well as in the formation of bloom populations are considered, and recommendations for future research are presented.


Asunto(s)
Estadios del Ciclo de Vida/fisiología , Escifozoos/fisiología , Animales , Cambio Climático , Ecosistema , Dinámica Poblacional
5.
Sci Rep ; 11(1): 18653, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34545165

RESUMEN

Ecologists and evolutionary biologists have been looking for the key(s) to the success of scyphomedusae through their long evolutionary history in multiple habitats. Their ability to generate young medusae (ephyrae) via two distinct reproductive strategies, strobilation or direct development from planula into ephyra without a polyp stage, has been a potential explanation. In addition to these reproductive modes, here we provide evidence of a third ephyral production which has been rarely observed and often confused with direct development from planula into ephyra. Planulae of Aurelia relicta Scorrano et al. 2017 and Cotylorhiza tuberculata (Macri 1778) settled and formed fully-grown polyps which transformed into ephyrae within several days. In distinction to monodisk strobilation, the basal polyp of indirect development was merely a non-tentaculate stalk that dissolved shortly after detachment of the ephyra. We provide a fully detailed description of this variant that increases reproductive plasticity within scyphozoan life cycles and is different than either true direct development or the monodisk strobilation. Our observations of this pattern in co-occurrence with mono- and polydisk strobilation in Aurelia spp. suggest that this reproductive mode may be crucial for the survival of some scyphozoan populations within the frame of a bet-hedging strategy and contribute to their long evolutionary success throughout the varied conditions of past and future oceans.


Asunto(s)
Océanos y Mares , Escifozoos/fisiología , Animales , Estadios del Ciclo de Vida , Reproducción/fisiología , Escifozoos/anatomía & histología , Escifozoos/crecimiento & desarrollo
6.
PLoS One ; 11(6): e0156588, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27332545

RESUMEN

For individuals living in environmentally heterogeneous environments, a key component for adaptation and persistence is the extent of phenotypic differentiation in response to local environmental conditions. In order to determine the extent of environmentally induced morphological variation in a natural population distributed along environmental gradients, it is necessary to account for potential genetic differences contributing to morphological differentiation. In this study, we set out to quantify geographic morphological variation in the moon jellyfish Aurelia exposed at the extremes of a latitudinal environmental gradient in the Gulf of Mexico (GoM). We used morphological data based on 28 characters, and genetic data taken from mitochondrial cytochrome oxidase I (COI) and nuclear internal transcribed spacer 1 (ITS-1). Molecular analyses revealed the presence of two genetically distinct species of Aurelia co-occurring in the GoM: Aurelia sp. 9 and Aurelia c.f. sp. 2, named for its divergence from (for COI) and similarity to (for ITS-1) Aurelia sp. 2 (Brazil). Neither species exhibited significant population genetic structure between the Northern and the Southeastern Gulf of Mexico; however, they differed greatly in the degree of geographic morphological variation. The morphology of Aurelia sp. 9 exhibited ecophenotypic plasticity and varied significantly between locations, while morphology of Aurelia c.f. sp. 2 was geographically invariant (i.e., canalized). The plastic, generalist medusae of Aurelia sp. 9 are likely able to produce environmentally-induced, "optimal" phenotypes that confer high relative fitness in different environments. In contrast, the non-plastic generalist individuals of Aurelia c.f. sp. 2 likely produce environmentally-independent phenotypes that provide the highest fitness across environments. These findings suggest the two Aurelia lineages co-occurring in the GoM were likely exposed to different past environmental conditions (i.e., different selective pressures) and evolved different strategies to cope with environmental variation. This study highlights the importance of using genetics and morphometric data to understand jellyfish ecology, evolution and systematics.


Asunto(s)
Ecosistema , Escifozoos/anatomía & histología , Escifozoos/genética , Simpatría , Animales , ADN Intergénico/genética , Complejo IV de Transporte de Electrones/metabolismo , Golfo de México , Imagenología Tridimensional , Mitocondrias/metabolismo , Fenotipo , Filogenia , Subunidades de Proteína/metabolismo , Análisis Espectral , Propiedades de Superficie , Temperatura
7.
PLoS One ; 11(8): e0162118, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27560975

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0156588.].

8.
PLoS One ; 7(7): e41155, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22815950

RESUMEN

An unusual number of near term and neonatal bottlenose dolphin (Tursiops truncatus) mortalities occurred in the northern Gulf of Mexico (nGOM) in 2011, during the first calving season after two well documented environmental perturbations; sustained cold weather in 2010 and the Deepwater Horizon oil spill (DWHOS). Preceding the stranding event, large volumes of cold freshwater entered the nGOM due to unusually large snowmelt on the adjacent watershed, providing a third potential stressor. We consider the possibility that this extreme cold and freshwater event contributed to the pattern of perinatal dolphin strandings along the nGOM coast. During the 4-month period starting January 2011, 186 bottlenose dolphins, including 46% perinatal calves (nearly double the percentage for the same time period from 2003-2010) washed ashore from Louisiana to western Florida. Comparison of the frequency distribution of strandings to flow rates and water temperature at a monitoring buoy outside Mobile Bay, Alabama (the 4(th) largest freshwater drainage in the U.S.) and along the nGOM coast showed that dolphin strandings peaked in Julian weeks 5, 8, and 12 (February and March), following water temperature minima by 2-3 weeks. If dolphin condition was already poor due to depleted food resources, bacterial infection, or other factors, it is plausible that the spring freshet contributed to the timing and location of the unique stranding event in early 2011. These data provide strong observational evidence to assess links between the timing of the DWHOS, other local environmental stressors, and mortality of a top local predator. Targeted analyses of tissues from stranded dolphins will be essential to define a cause of death, and our findings highlight the importance of considering environmental data along with biological samples to interpret stranding patterns during and after an unusual mortality event.


Asunto(s)
Delfín Mular/fisiología , Alabama , Ciencias de la Nutrición Animal , Animales , Ecología , Ambiente , Monitoreo del Ambiente/métodos , Agua Dulce , Geografía , Golfo de México , Floraciones de Algas Nocivas , Temperatura , Contaminantes del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA