Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Paediatr Child Health ; 58(1): 8-15, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34427008

RESUMEN

Monogenic rare disorders contribute significantly to paediatric morbidity and mortality, and elucidation of the underlying genetic cause may have benefits for patients, families and clinicians. Advances in genomic technology have enabled diagnostic yields of up to 50% in some paediatric cohorts. This has led to an increase in the uptake of genetic testing across paediatric disciplines. This can place an increased burden on paediatricians, who may now be responsible for interpreting and explaining test results to patients. However, genomic results can be complex, and sometimes inconclusive for the ordering paediatrician. Results may also cause uncertainty and anxiety for patients and their families. The paediatrician's genetic literacy and knowledge of genetic principles are therefore critical to inform discussions with families and guide ongoing patient care. Here, we present four hypothetical case vignettes where genomic testing is undertaken, and discuss possible results and their implications for paediatricians and families. We also provide a list of key terms for paediatricians.


Asunto(s)
Genómica , Pediatras , Niño , Pruebas Genéticas , Humanos
2.
J Paediatr Child Health ; 57(4): 477-483, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33566436

RESUMEN

Genomic testing for a genetic diagnosis is becoming standard of care for many children, especially those with a syndromal intellectual disability. While previously this type of specialised testing was performed mainly by clinical genetics teams, it is increasingly being 'mainstreamed' into standard paediatric care. With the introduction of a new Medicare rebate for genomic testing in May 2020, this type of testing is now available for paediatricians to order, in consultation with clinical genetics. Children must be aged less than 10 years with facial dysmorphism and multiple congenital abnormalities or have global developmental delay or moderate to severe intellectual disability. This rebate should increase the likelihood of a genetic diagnosis, with accompanying benefits for patient management, reproductive planning and diagnostic certainty. Similar to the introduction of chromosomal microarray into mainstream paediatrics, this genomic testing will increase the number of genetic diagnoses, however, will also yield more variants of uncertain significance, incidental findings, and negative results. This paper aims to guide paediatricians through the process of genomic testing, and represents the combined expertise of educators, clinical geneticists, paediatricians and genomic pathologists around Australia. Its purpose is to help paediatricians navigate choosing the right genomic test, consenting patients and understanding the possible outcomes of testing.


Asunto(s)
Discapacidad Intelectual , Pediatría , Anciano , Australia , Niño , Discapacidades del Desarrollo/diagnóstico , Discapacidades del Desarrollo/genética , Pruebas Genéticas , Genómica , Humanos , Discapacidad Intelectual/genética , Programas Nacionales de Salud
3.
BMJ Open ; 12(10): e063249, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36288836

RESUMEN

INTRODUCTION: Developmental and epileptic encephalopathies (DEEs) are rare epilepsy conditions that collectively impact 1 in 2000 children. They are highly genetically heterogeneous, resulting in significant barriers to accurate and adequate information for caregivers. This can lead to increased distress and dissatisfaction with the healthcare system. To address this gap, we developed 'GenE Compass' to provide caregivers with the highest-quality possible, understandable and relevant information in response to specific questions about their child's DEE. Using a mixed-method design, we will now pilot GenE Compass to evaluate the acceptability to caregivers and clinicians, feasibility and impact to caregivers. METHODS AND ANALYSIS: We will recruit 88 caregivers (estimated final sample of 50 at follow-up) who have a child under 18 years of age with a suspected or confirmed DEE diagnosis. Following consent and a baseline questionnaire (questionnaire 1 (Q1)), participants will be able to submit questions to GenE Compass over a 3-month period. After 3 months, participants will complete a follow-up questionnaire (Q2) and an optional telephone interview to answer the research questions. Primary outcomes are acceptability of GenE Compass and feasibility of delivering the intervention (eg, cost of the intervention, number of questions submitted and time taken to respond to questions). Secondary outcomes include the impact of GenE Compass on caregivers' quality of life, information searching behaviours, perceptions of their child's illness and activation. ETHICS AND DISCUSSION: The study protocol (V.2, dated 16 September 2021) has been approved by the Sydney Children's Hospitals Network Human Research Ethics Committee (ETH11277). The results will be disseminated in peer-reviewed journals and at scientific conferences. A lay summary will be disseminated to all participants. TRIAL REGISTRATION NUMBER: ACTRN12621001544864.


Asunto(s)
Cuidadores , Epilepsia , Niño , Humanos , Adolescente , Proyectos Piloto , Calidad de Vida , Estudios de Factibilidad , Epilepsia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA