Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Phytopathology ; 114(1): 21-34, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37505093

RESUMEN

Species from the Botryosphaeriaceae family are the causal agents of Botryosphaeria dieback (BD), a worldwide grapevine trunk disease. Because of their lifestyle and their adaptation to a wide range of temperatures, these fungi constitute a serious threat to vineyards and viticulture, especially in the actual context of climate change. Grapevine plants from both nurseries and vineyards are very susceptible to infections by botryosphaeriaceous fungi due to several cuts and wounds made during their propagation process and their entire life cycle, respectively. When decline becomes chronic or apoplectic, it reduces the longevity of the vineyard and affects the quality of the wine, leading to huge economic losses. Given the environmental impact of fungicides, and their short period of effectiveness in protecting pruning wounds, alternative strategies are being developed to fight BD fungal pathogens and limit their propagation. Among them, biological control has been recognized as a promising and sustainable alternative. However, there is still no effective strategy for combating this complex disease, conditioned by both fungal life traits and host tolerance traits, in relationships with the whole microbiome/microbiota. To provide sound guidance for an effective and sustainable integrated management of BD, by combining the limitation of infection risk, tolerant grapevine cultivars, and biological control, this review explores some of the factors conditioning the expression of BD in grapevine. Among them, the lifestyle of BD-associated pathogens, their pathogenicity factors, the cultivar traits of tolerance or susceptibility, and the biocontrol potential of Bacillus spp. and Trichoderma spp. are discussed.


Asunto(s)
Ascomicetos , Fungicidas Industriales , Trichoderma , Vitis , Vitis/microbiología , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología
2.
Plant Dis ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38812365

RESUMEN

Infection of grapevines by fungal pathogens causing grapevine trunk diseases (GTDs) primarily arises from annual pruning wounds made during the dormant season. While various studies have showcased the efficacy of products in shielding pruning wounds against GTDs infections, most of these investigations hinge on artificial pathogen inoculations, which may not faithfully mirror real field conditions. This study aimed to evaluate and compare the efficacy of various liquid formulation fungicides (pyraclostrobin + boscalid) and paste treatments, as well as biological control agents (BCA: Trichoderma atroviride SC1, T. atroviride I-1237, and T. asperellum ICC012 + T. gamsii ICC080), for their potential to prevent natural infection of grapevine pruning wounds by trunk disease fungi in two field trials located in Samaniego (Northern Spain) and Madiran (Southern France) over three growing seasons. Wound treatments were applied immediately after pruning in February. One year after pruning, canes were harvested from vines and brought to the laboratory for assessment of Trichoderma spp. and fungal trunk pathogens. More than 1,200 fungal isolates associated with five GTDs (esca, Botryophaeria, Diaporthe and Eutypa diebacks, and Cytospora canker) were collected from the two vineyards each growing season. Our findings reveal that none of the products under investigation exhibited complete effectiveness against all the GTDs. The efficacy of these products was particularly influenced by the specific year of study. A notable exception was observed with the biocontrol agent T. atroviride I-1237, which consistently demonstrated effectiveness against Botryosphaeria dieback infections throughout each year of the study, irrespective of the location. The remaining products exhibited efficacy in specific years or locations against particular diseases, with the physical barrier (paste) showing the least overall effectiveness. The recovery rates of Trichoderma spp. in treated plants were highly variable, ranging from 17% to 100%, with both strains of T. atroviride yielding the highest isolation rates. This study underscores the importance of customizing treatments for specific diseases, taking into account the influence of environmental factors for BCA applications.

3.
Plant Dis ; 105(11): 3657-3668, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34096766

RESUMEN

A field survey conducted on asymptomatic grapevine propagation material from nurseries and symptomatic young grapevines throughout different regions of Algeria yielded a collection of 70 Phaeoacremonium-like isolates and three Cadophora-like isolates. Based on morphology and DNA sequence data of ß-tubulin (tub2) and actin, five Phaeoacremonium species were identified including Phaeoacremonium minimum (22 isolates), Phaeoacremonium venezuelense (19 isolates), Phaeoacremonium parasiticum (17 isolates), Phaeoacremonium australiense (8 isolates), and Phaeoacremonium iranianum (4 isolates). The latter two species (P. australiense and P. iranianum) were reported for the first time in Algeria. Multilocus phylogenetic analyses (internal transcribed spacer, tub2, and translation elongation factor 1-α) and morphological features, allowed the description of the three isolates belonging to the genus Cadophora (WAMC34, WAMC117, and WAMC118) as a novel species, named Cadophora sabaouae sp. nov. Pathogenicity tests were conducted on grapevine cuttings cultivar Cardinal. All the identified species were pathogenic on grapevine cuttings.


Asunto(s)
Vitis , Argelia , Secuencia de Bases , Filogenia , Enfermedades de las Plantas
4.
Phytopathology ; 110(6): 1216-1225, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32129711

RESUMEN

Although the fungus Phaeomoniella chlamydospora is the most commonly detected causal agent of Petri disease and esca, two important fungal grapevine trunk diseases, little is known about the dispersal patterns of P. chlamydospora inoculum. In this work, we studied the dispersal of P. chlamydospora airborne inoculum from 2016 to 2018 in two viticultural areas of eastern (Ontinyent) and northern (Logroño) Spain. The vineyards were monitored weekly from November to April using microscope slide traps, and P. chlamydospora was detected and quantified by a specific real-time quantitative (qPCR) method set up in this work. The method was found to be sensitive, and a good correlation was observed between numbers of P. chlamydospora conidia (counted by microscope) and DNA copy numbers (quantified by qPCR). We consistently detected DNA of P. chlamydospora at both locations and in all seasons but in different quantities. In most cases, DNA was first detected in the last half of November, and most of the DNA was detected from December to early April. When rain was used as a predictor of P. chlamydospora DNA detection in traps, false-negative detections were observed, but these involved only 4% of the total. The dispersal pattern of P. chlamydospora DNA over time was best described (R2 = 0.765 and concordance correlation coefficient = 0.870) by a Gompertz equation, with time expressed as hydrothermal time (a physiological time accounting for the effects of temperature and rain). This equation could be used to predict periods with a high risk of dispersal of P. chlamydospora.


Asunto(s)
Ascomicetos , Vitis , Granjas , Enfermedades de las Plantas , España
5.
Plant Dis ; 104(4): 1144-1150, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32053059

RESUMEN

Black-foot disease is one of the most important soilborne diseases affecting planting material in grapevine nurseries and young vineyards. Accurate, early, and specific detection and quantification of black-foot disease causing fungi are essential to alert growers and nurseries to the presence of the pathogens in soil, and to prevent the spread of these pathogens through grapevines using certified pathogen-free planting material and development of resistance. We comparatively assessed the accuracy, efficiency, and specificity of droplet digital PCR (ddPCR) and real-time PCR (qPCR) techniques for the detection and quantification of Ilyonectria liriodendri in bulk and rhizosphere soils, as well as grapevine endorhizosphere. Fungal abundance was not affected by soil-plant fractions. Both techniques showed a high degree of correlation across the samples assessed (R2 = 0.95) with ddPCR being more sensitive to lower target concentrations. Roots of asymptomatic vines were found to be a microbial niche that is inhabited by black-foot disease fungi.


Asunto(s)
Hypocreales , Enfermedades de las Plantas , Raíces de Plantas , Rizosfera , Suelo
6.
Plant Dis ; 104(8): 2269-2274, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32568630

RESUMEN

Cadophora luteo-olivacea is the most prevalent Cadophora species associated with Petri disease and esca of grapevine. Accurate, early, and specific detection and quantification of C. luteo-olivacea are essential to alert growers and nurseries to the presence of the pathogens in soil and to prevent the spread of this pathogen through grapevine planting material. The aim of this study was to develop molecular tools to detect and quantify C. luteo-olivacea inoculum from environmental samples. Species specific primers based on the ß-tubulin gene and a TaqMan probe for droplet digital PCR (ddPCR) and quantitative PCR (qPCR) were first developed to detect and quantify purified DNA of the target fungus. Specificity tests showed that the primers were able to amplify the C. luteo-olivacea DNA (20 isolates) while none of the 29 nontarget fungal species (58 isolates) tested were amplified. The ddPCR was shown to be more sensitive compared with qPCR in the detection and quantification of C. luteo-olivacea at very low concentrations and was further selected to accurately detect and quantify the fungus from environmental samples. Twenty-five of the 94 grafting plants (26.6%) analyzed by ddPCR tested positive to C. luteo-olivacea DNA (>3 copies/µl). C. luteo-olivacea was barely detected from vineyard soils. The procedure employed in this study revealed the presence of the pathogen in symptomless vines, which makes implementation of this technique suitable for certification schemes of C. luteo-olivacea-free grapevine planting material.


Asunto(s)
Ascomicetos , Vitis , Cartilla de ADN , Granjas , Suelo
7.
Plant Dis ; 104(1): 94-104, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31738690

RESUMEN

In this study, 3,426 grafted grapevines ready to be planted from 15 grapevine nursery fields in Northern Spain were inspected from 2016 to 2018 for black-foot causing pathogens. In all, 1,427 isolates of black-foot pathogens were collected from the asymptomatic inner tissues of surface sterilized secondary roots and characterized based on morphological features and DNA sequence data of the nuclear ribosomal DNA-internal transcribed spacer region, histone H3, translation elongation factor 1-alpha and ß-tubulin genes. Eleven species belonging to the genera Dactylonectria, Ilyonectria, Neonectria, and Thelonectria were identified, including Dactylonectria alcacerensis, D. macrodidyma, D. novozelandica, D. pauciseptata, D. torresensis, Ilyonectria liriodendri, I. pseudodestructans, I. robusta, Neonectria quercicola, Neonectria sp. 1, and Thelonectria olida. In addition, two species are newly described, namely D. riojana and I. vivaria. Twenty-four isolates representing 13 black-foot species were inoculated onto grapevine seedlings cultivar 'Tempranillo'. The pathogenicity tests detected diversity in virulence among fungal species and between isolates within each species. The most virulent species was D. novozelandica isolate BV-0760, followed by D. alcacerensis isolate BV-1240 and I. vivaria sp. nov. isolate BV-2305. This study improves our knowledge on the etiology and virulence of black-foot disease pathogens, and opens up new perspectives in the study of the endophytic phase of these pathogens in grapevines.


Asunto(s)
Variación Genética , Hypocreales , Enfermedades de las Plantas , Vitis , Genes Fúngicos/genética , Hypocreales/clasificación , Hypocreales/citología , Hypocreales/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/estadística & datos numéricos , España , Especificidad de la Especie , Virulencia , Vitis/microbiología
8.
Plant Dis ; 103(4): 711-720, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30777803

RESUMEN

Syzygium cumini trees with dieback symptoms and cankers were observed in two provinces in Iran. Isolations were made from diseased branches and cankers and from asymptomatic S. cumini wood samples. Several trunk disease pathogens were identified based on morphological characteristics and by molecular methods, including Cadophora luteo-olivacea, Diplodia sapinea, D. seriata, Neoscytalidium hyalinum, Phaeoacremonium fraxinopennsylvanicum, P. krajdenii, P. parasiticum, P. viticola, and Pleurostoma richardsiae, which were isolated from S. cumini for the first time in the world. Pathogenicity tests conducted with all species confirmed their status as possible S. cumini pathogens. N. hyalinum was the most aggressive species and caused the longest lesions on inoculated shoots. The endophytic character of some fungal species isolated from asymptomatic wood of S. cumini is further discussed. Our results indicated that S. cumini is a new woody host to many known fungal trunk pathogens.


Asunto(s)
Ascomicetos , Syzygium , Ascomicetos/fisiología , Irán , Syzygium/microbiología , Árboles/microbiología , Madera/microbiología
9.
Plant Dis ; 102(1): 12-39, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30673457

RESUMEN

Fungal trunk diseases are some of the most destructive diseases of grapevine in all grape growing areas of the world. Management of GTDs has been intensively studied for decades with some great advances made in our understanding of the causal pathogens, their epidemiology, impact, and control. However, due to the breadth and complexity of the problem, no single effective control measure has been developed. Management of GTD must be holistic and integrated, with an interdisciplinary approach conducted in both nurseries and vineyards that integrates plant pathology, agronomy, viticulture, microbiology, epidemiology, biochemistry, physiology, and genetics. In this review, we identify a number of areas of future prospect for effective management of GTDs worldwide, which, if addressed, will provide a positive outlook on the longevity of vineyards in the future.


Asunto(s)
Ascomicetos/fisiología , Basidiomycota/fisiología , Enfermedades de las Plantas/prevención & control , Vitis/microbiología , Enfermedades de las Plantas/microbiología
10.
Plant Dis ; 100(12): 2483-2491, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30686161

RESUMEN

In this study, 31 almond orchards with trees showing severe decline symptoms were surveyed from 2009 to 2014 on the island of Mallorca (Spain). In all, 45 Botryosphaeriaceae isolates were collected and characterized based on phenotypical features and comparisons of DNA sequence data of the nuclear ribosomal DNA-internal transcribed spacer region and elongation factor 1-α gene. Five species were identified as Diplodia olivarum, D. seriata, Neofusicoccum luteum, N. mediterraneum, and N. parvum. Pathogenicity tests were performed on four cultivars ('Pons', 'Vivot', 'Jordi', and 'Ferragnes') under field conditions for two consecutive years (2013 to 2014), and confirmed that all five species cause canker and dieback of almond, with Neofusicoccum spp. more virulent than Diplodia spp. in both years. Jordi was less sensitive to fungal infection in 2013. First reports from almond in Spain include N. mediterraneum and N. luteum.

11.
Mycology ; 15(1): 129-135, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38558841

RESUMEN

Two cases of phaeohyphomycotic infections were caused by Phaeoacremonium tuscanicum, not previously identified in human infections, and one new species, Phaeoacremonium indicum, respectively. Morphological and cultural investigation as well as phylogenetic analysis was constructed based on maximum likelihood analyses using actin and -tubulin sequences to identify the fungal isolates.

12.
Pest Manag Sci ; 79(5): 1674-1683, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36573682

RESUMEN

BACKGROUND: Grapevine trunk diseases (GTDs) are a complex group of diseases that lead to major economic losses in all wine-producing countries. The investigation of biocontrol agents (BCAs) capable of forestalling or at least minimizing the development of GTDs has, recently, become a priority. Nursery experiments were set up to (i) assess the biocontrol effect of Trichoderma atroviride (Ta) SC1 and Bacillus subtilis (Bs) PTA-271, alone and in simultaneous application, against Botryosphaeria dieback (BOT)- and black-foot (BF)- associated pathogens during the grapevine propagation process and (ii) evaluate the success of the BCA inoculation during the grapevine propagation process, using quantitative reverse-transcription polymerase chain reaction techniques. RESULTS: The results demonstrated a significant reduction in the percentage of potentially infected plants and the percentage of fungal isolation from wood fragments of BOT and BF pathogens in nursery material treated with Ta SC1 and Bs PTA-271, respectively. In one of the experiments, simultaneous treatments with Bs PTA-271 and Ta SC1 caused a reduction in percentages of potentially infected plants and fungal isolation, from wood fragments containing BOT and BF pathogens. CONCLUSION: These biological treatments may be relevant components of an integrated approach, using complementary management strategies to limit infection by GTD pathogens, but further research is still needed to elucidate the effectiveness of Bs PTA-271 and the benefits of simultaneous application with Ta SC1 for the control of GTD pathogens in nurseries. © 2022 Society of Chemical Industry.


Asunto(s)
Ascomicetos , Vitis , Bacillus subtilis , Vitis/microbiología , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología
13.
Tree Physiol ; 43(3): 441-451, 2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36416206

RESUMEN

Xylem anatomy may change in response to environmental or biotic stresses. Vascular occlusion, an anatomical modification of mature xylem, contributes to plant resistance and susceptibility to different stresses. In woody organs, xylem occlusions have been examined as part of the senescence process, but their presence and function in leaves remain obscure. In grapevine, many stresses are associated with premature leaf senescence inducing discolorations and scorched tissue in leaves. However, we still do not know whether the leaf senescence process follows the same sequence of physiological events and whether leaf xylem anatomy is affected in similar ways. In this study, we quantified vascular occlusions in midribs from leaves with symptoms of the grapevine disease esca, magnesium deficiency and autumn senescence. We found higher amounts of vascular occlusions in leaves with esca symptoms (in 27% of xylem vessels on average), whereas the leaves with other symptoms (as well as the asymptomatic controls) had far fewer occlusions (in 3% of vessels). Therefore, we assessed the relationship between xylem occlusions and esca leaf symptoms in four different countries (California in the USA, France, Italy and Spain) and eight different cultivars. We monitored the plants over the course of the growing season, confirming that vascular occlusions do not evolve with symptom age. Finally, we investigated the hydraulic integrity of leaf xylem vessels by optical visualization of embolism propagation during dehydration. We found that the occlusions lead to hydraulic dysfunction mainly in the peripheral veins compared with the midribs in esca symptomatic leaves. These results open new perspectives on the role of vascular occlusions during the leaf senescence process, highlighting the uniqueness of esca leaf symptoms and its consequence on leaf physiology.


Asunto(s)
Vitis , Agua , Agua/fisiología , Vitis/fisiología , Hojas de la Planta/fisiología , Xilema/fisiología , Madera
14.
J Fungi (Basel) ; 8(5)2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35628677

RESUMEN

Rootstocks are the link between the soil and scion in grapevines, can provide tolerance to abiotic and biotic stresses, and regulate yield and grape quality. The vascular system of grapevine rootstocks in nurseries is still an underexplored niche for research, despite its potential for hosting beneficial and pathogenic microorganisms. The purpose of this study was to investigate the changes in the composition of fungal communities in 110 Richter and 41 Berlandieri rootstocks at four stages of the grapevine propagation process. Taxonomic analysis revealed that the fungal community predominantly consisted of phylum Ascomycota in all stages of the propagation process. The alpha-diversity of fungal communities differed among sampling times for both rootstocks, with richness and fungal diversity in the vascular system decreasing through the propagation process. The core microbiome was composed of the genera Cadophora, Cladosporium, Penicillium and Alternaria in both rootstocks, while the pathogenic genus Neofusicoccum was identified as a persistent taxon throughout the propagation process. FUNguild analysis showed that the relative abundance of plant pathogens associated with trunk diseases increased towards the last stage in nurseries. Fungal communities in the vascular system of grapevine rootstocks differed between the different stages of the propagation process in nurseries. Numerous genera associated with potential biocontrol activity and grapevine trunk diseases were identified. Understanding the large diversity of fungi in the rootstock vascular tissue and the interactions between fungal microbiota and grapevine will help to develop sustainable strategies for grapevine protection.

15.
Front Plant Sci ; 13: 960289, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36092443

RESUMEN

Grapevine is regarded as a highly profitable culture, being well spread worldwide and mostly directed to the wine-producing industry. Practices to maintain the vineyard in healthy conditions are tenuous and are exacerbated due to abiotic and biotic stresses, where fungal grapevine trunk diseases (GTDs) play a major role. The abolishment of chemical treatments and the intensification of several management practices led to an uprise in GTD outbreaks. Symptomatology of GTDs is very similar among diseases, leading to underdevelopment of the vines and death in extreme scenarios. Disease progression is widely affected by biotic and abiotic factors, and the prevalence of the pathogens varies with country and region. In this review, the state-of-the-art regarding identification and detection of GTDs is vastly analyzed. Methods and protocols used for the identification of GTDs, which are currently rather limited, are highlighted. The main conclusion is the utter need for the development of new technologies to easily and precisely detect the presence of the pathogens related to GTDs, allowing to readily take phytosanitary measures and/or proceed to plant removal in order to establish better vineyard management practices. Moreover, new practices and methods of detection, identification, and quantification of infectious material would allow imposing greater control on nurseries and plant exportation, limiting the movement of infected vines and thus avoiding the propagation of fungal inoculum throughout wine regions.

16.
Front Microbiol ; 12: 726132, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34721323

RESUMEN

Grapevine trunk diseases (GTDs) are a big threat for global viticulture. Without effective chemicals, biocontrol strategies are developed as alternatives to better cope with environmental concerns. A combination of biological control agents (BCAs) could even improve sustainable disease management through complementary ways of protection. In this study, we evaluated the combination of Bacillus subtilis (Bs) PTA-271 and Trichoderma atroviride (Ta) SC1 for the protection of Chardonnay and Tempranillo rootlings against Neofusicoccum parvum Bt67, an aggressive pathogen associated to Botryosphaeria dieback (BD). Indirect benefits offered by each BCA and their combination were then characterized in planta, as well as their direct benefits in vitro. Results provide evidence that (1) the cultivar contributes to the beneficial effects of Bs PTA-271 and Ta SC1 against N. parvum, and that (2) the in vitro BCA mutual antagonism switches to the strongest fungistatic effect toward Np-Bt67 in a three-way confrontation test. We also report for the first time the beneficial potential of a combination of BCA against Np-Bt67 especially in Tempranillo. Our findings highlight a common feature for both cultivars: salicylic acid (SA)-dependent defenses were strongly decreased in plants protected by the BCA, in contrast with symptomatic ones. We thus suggest that (1) the high basal expression of SA-dependent defenses in Tempranillo explains its highest susceptibility to N. parvum, and that (2) the cultivar-specific responses to the beneficial Bs PTA-271 and Ta SC1 remain to be further investigated.

17.
Front Plant Sci ; 12: 726461, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34712253

RESUMEN

Fungal grapevine trunk diseases (GTDs) are some of the most pressing threats to grape production worldwide. While these diseases are associated with several fungal pathogens, Phaeomoniella chlamydospora and Phaeoacremonium minimum are important contributors to esca and Petri diseases. Recent research has linked grapevine xylem diameter with tolerance to Pa. chlamydospora in commercial rootstocks. In this study, we screen over 25 rootstocks for xylem characteristics and tolerance to both Pa. chlamydospora and Pm. minimum. Tolerance was measured by fungal incidence and DNA concentration (quantified via qPCR), while histological analyses were used to measure xylem characteristics, including xylem vessels diameter, density, and the proportion of the stem surface area covered by xylem vessels. Rootstocks were grouped into different classes based on xylem characteristics to assess the potential association between vasculature traits and pathogen tolerance. Our results revealed significant differences in all the analyzed xylem traits, and also in DNA concentration for both pathogens among the tested rootstocks. They corroborate the link between xylem vessels diameter and tolerance to Pa. chlamydospora. In Pm. minimum, the rootstocks with the widest xylem diameter proved the most susceptible. This relationship between vasculature development and pathogen tolerance has the potential to inform both cultivar choice and future rootstock breeding to reduce the detrimental impact of GTDs worldwide.

18.
Plants (Basel) ; 10(6)2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34207542

RESUMEN

Grapevine trunk diseases (GTDs) are one of the main biotic stress factors affecting this crop. The use of tolerant grapevine cultivars would be an interesting and sustainable alternative strategy to control GTDs. To date, most studies about cultivar susceptibility have been conducted under controlled conditions, and little information is available about tolerance to natural infections caused by GTD fungi. The objectives of this study were: (i) to identify tolerant cultivars to GTD fungi within a Spanish germplasm collection, based on external symptoms observed in the vineyard; and (ii) to characterize the pathogenic mycoflora associated with symptomatic vines. For this purpose, a grapevine germplasm collection including 22 white and 25 red cultivars was monitored along three growing seasons, and their susceptibility for esca foliar symptoms was assessed. Fungi were identified by using morphological and molecular methods. Cultivars such as, 'Monastrell', 'Graciano', 'Cabernet Franc', 'Cabernet Sauvignon', 'Syrah', 'Moscatel de Alejandría', 'Sauvignon Blanc', and 'Airén' displayed high susceptibility to GTDs, whereas others such as 'Petit Verdot', 'Pinot Noir', 'Chardonnay', and 'Riesling' were considered as tolerant. The prevalent fungal species isolated from symptomatic vines were Phaeomoniella chlamydospora (27.9% of the fungal isolates), Cryptovalsa ampelina (24.6%), and Dothiorella sarmentorum (21.3%).

19.
J Fungi (Basel) ; 7(9)2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34575724

RESUMEN

Plant roots support complex microbial communities that can influence nutrition, plant growth, and health. In grapevine, little is known about the impact of abiotic stresses on the belowground microbiome. In this study, we examined the drought-induced shifts in fungal composition in the root endosphere, the rhizosphere and bulk soil by internal transcribed spacer (ITS) high-throughput amplicon sequencing (HTAS). We imposed three irrigation regimes (100%, 50%, and 25% of the field capacity) to one-year old grapevine rootstock plants cv. SO4 when plants had developed 2-3 roots. Root endosphere, rhizosphere, and bulk soil samples were collected 6- and 12-months post-plantation. Drought significantly modified the overall fungal composition of all three compartments, with the root endosphere compartment showing the greatest divergence from well-watered control (100%). The overall response of the fungal microbiota associated with black-foot disease (Dactylonectria and "Cylindrocarpon" genera) and the potential biocontrol agent Trichoderma to drought stress was consistent across compartments, namely that their relative abundances were significantly higher at 50-100% than at 25% irrigation regime. We identified a significant enrichment in several fungal genera such as the arbuscular mycorrhizal fungus Funneliformis during drought at 25% watering regime within the roots. Our results reveal that drought stress, in addition to its well-characterized effects on plant physiology, also results in the restructuring of grapevine root microbial communities, and suggest the possibility that members of the altered grapevine microbiota might contribute to plant survival under extreme environmental conditions.

20.
Pest Manag Sci ; 77(2): 697-708, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32841479

RESUMEN

BACKGROUND: Black-foot and Petri diseases are the main fungal diseases associated with young grapevine decline. Two field experiments were established to evaluate the preventive effect of two potential biocontrol agents (BCAs), that is Streptomyces sp. E1 + R4 and Pythium oligandrum Po37, and three BCA-commercial products containing Trichoderma atroviride SC1, Trichoderma koningii TK7 and Pseudomonas fluorescens + Bacillus atrophaeus on fungal infection in grafted plants and plant growth parameters. RESULTS: The effectiveness of some BCA in reducing the incidence and severity of both diseases was dependent on the plant part analyzed and the plant age. No single BCA application was able to control both diseases. Streptomyces sp. E1 + R4 were able to reduce significantly the infection of the most prevalent black-foot disease fungi while P. oligandrum Po37 and Trichoderma spp. were able to reduce significantly Phaeomoniella chlamydospora and Phaeoacremonium minimum (Petri disease) infection. BCA treatments had no effect on the shoot weight, and root weight was significantly lower in all BCA treatments with respect to the control. CONCLUSIONS: The combination of the disease-suppressive activity of two or more beneficial microbes in a biocontrol preparation is required to prevent infection by black-foot and Petri disease fungi in vineyards.


Asunto(s)
Vitis , Ascomicetos , Bacillus , Hypocreales , Enfermedades de las Plantas/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA