Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(44): 27211-27217, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33077588

RESUMEN

Lake Baikal, lying in a rift zone in southeastern Siberia, is the world's oldest, deepest, and most voluminous lake that began to form over 30 million years ago. Cited as the "most outstanding example of a freshwater ecosystem" and designated a World Heritage Site in 1996 due to its high level of endemicity, the lake and its ecosystem have become increasingly threatened by both climate change and anthropogenic disturbance. Here, we present a record of nutrient cycling in the lake, derived from the silicon isotope composition of diatoms, which dominate aquatic primary productivity. Using historical records from the region, we assess the extent to which natural and anthropogenic factors have altered biogeochemical cycling in the lake over the last 2,000 y. We show that rates of nutrient supply from deep waters to the photic zone have dramatically increased since the mid-19th century in response to changing wind dynamics, reduced ice cover, and their associated impact on limnological processes in the lake. With stressors linked to untreated sewage and catchment development also now impacting the near-shore region of Lake Baikal, the resilience of the lake's highly endemic ecosystem to ongoing and future disturbance is increasingly uncertain.


Asunto(s)
Agua Dulce/química , Lagos/química , Nutrientes/análisis , Cambio Climático , Diatomeas , Ecosistema , Ciencia Ambiental/métodos , Sedimentos Geológicos , Cubierta de Hielo , Lagos/análisis , Federación de Rusia , Siberia
2.
Sensors (Basel) ; 21(24)2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34960600

RESUMEN

Continuous monitoring of ice cover belongs to the key tasks of modern climate research, providing up-to-date information on climate change in cold regions. While a strong advance in ice monitoring worldwide has been provided by the recent development of remote sensing methods, quantification of seasonal ice cover is impossible without on-site autonomous measurements of the mass and heat budget. In the present study, we propose an autonomous monitoring system for continuous in situ measuring of vertical temperature distribution in the near-ice air, the ice strata and the under-ice water layer for several months with simultaneous records of solar radiation incoming at the lake surface and passing through the snow and ice covers as well as snow and ice thicknesses. The use of modern miniature analog and digital sensors made it possible to make a compact, energy efficient measurement system with high precision and spatial resolution and characterized by easy deployment and transportation. In particular, the high resolution of the ice thickness probe of 0.05 mm allows to resolve the fine-scale processes occurring in low-flow environments, such as freshwater lakes. Several systems were tested in numerous studies in Lake Baikal and demonstrated a high reliability in deriving the ice heat balance components during ice-covered periods.


Asunto(s)
Cubierta de Hielo , Lagos , Cambio Climático , Reproducibilidad de los Resultados , Nieve
3.
Sci Data ; 9(1): 318, 2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35710905

RESUMEN

In recent decades, lakes have experienced unprecedented ice loss with widespread ramifications for winter ecological processes. The rapid loss of ice, resurgence of winter biology, and proliferation of remote sensing technologies, presents a unique opportunity to integrate disciplines to further understand the broad spatial and temporal patterns in ice loss and its consequences. Here, we summarize ice phenology records for 78 lakes in 12 countries across North America, Europe, and Asia to permit the inclusion and harmonization of in situ ice phenology observations in future interdisciplinary studies. These ice records represent some of the longest climate observations directly collected by people. We highlight the importance of applying the same definition of ice-on and ice-off within a lake across the time-series, regardless of how the ice is observed, to broaden our understanding of ice loss across vast spatial and temporal scales.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA