Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.035
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(11): e2215417120, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36897973

RESUMEN

Inflammation causes pain by shifting the balance of ionic currents in nociceptors toward depolarization, leading to hyperexcitability. The ensemble of ion channels within the plasma membrane is regulated by processes including biogenesis, transport, and degradation. Thus, alterations in ion channel trafficking may influence excitability. Sodium channel NaV1.7 and potassium channel KV7.2 promote and oppose excitability in nociceptors, respectively. We used live-cell imaging to investigate mechanisms by which inflammatory mediators (IM) modulate the abundance of these channels at axonal surfaces through transcription, vesicular loading, axonal transport, exocytosis, and endocytosis. Inflammatory mediators induced a NaV1.7-dependent increase in activity in distal axons. Further, inflammation increased the abundance of NaV1.7, but not of KV7.2, at axonal surfaces by selectively increasing channel loading into anterograde transport vesicles and insertion at the membrane, without affecting retrograde transport. These results uncover a cell biological mechanism for inflammatory pain and suggest NaV1.7 trafficking as a potential therapeutic target.


Asunto(s)
Axones , Nociceptores , Ratas , Animales , Axones/metabolismo , Dolor/metabolismo , Inflamación/metabolismo , Mediadores de Inflamación/metabolismo
2.
Cereb Cortex ; 34(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38836834

RESUMEN

Congenital heart disease affects 1% of infants and is associated with impaired neurodevelopment. Right- or left-sided sulcal features correlate with executive function among people with Tetralogy of Fallot or single ventricle congenital heart disease. Studies of multiple congenital heart disease types are needed to understand regional differences. Further, sulcal pattern has not been studied in people with d-transposition of the great arteries. Therefore, we assessed the relationship between sulcal pattern and executive function, general memory, and processing speed in a meta-regression of 247 participants with three congenital heart disease types (114 single ventricle, 92 d-transposition of the great arteries, and 41 Tetralogy of Fallot) and 94 participants without congenital heart disease. Higher right hemisphere sulcal pattern similarity was associated with improved executive function (Pearson r = 0.19, false discovery rate-adjusted P = 0.005), general memory (r = 0.15, false discovery rate P = 0.02), and processing speed (r = 0.17, false discovery rate P = 0.01) scores. These positive associations remained significant in for the d-transposition of the great arteries and Tetralogy of Fallot cohorts only in multivariable linear regression (estimated change ß = 0.7, false discovery rate P = 0.004; ß = 4.1, false discovery rate P = 0.03; and ß = 5.4, false discovery rate P = 0.003, respectively). Duration of deep hypothermic circulatory arrest was also associated with outcomes in the multivariate model and regression tree analysis. This suggests that sulcal pattern may provide an early biomarker for prediction of later neurocognitive challenges among people with congenital heart disease.


Asunto(s)
Cardiopatías Congénitas , Niño , Femenino , Humanos , Masculino , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Corteza Cerebral/crecimiento & desarrollo , Función Ejecutiva/fisiología , Cardiopatías Congénitas/complicaciones , Cardiopatías Congénitas/patología , Imagen por Resonancia Magnética , Trastornos del Neurodesarrollo/etiología , Trastornos del Neurodesarrollo/patología , Adolescente , Adulto Joven
3.
J Biol Chem ; 299(1): 102816, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36539035

RESUMEN

Neuronal function relies on the maintenance of appropriate levels of various ion channels at the cell membrane, which is accomplished by balancing secretory, degradative, and recycling pathways. Neuronal function further depends on membrane specialization through polarized distribution of specific proteins to distinct neuronal compartments such as axons. Voltage-gated sodium channel NaV1.7, a threshold channel for firing action potentials in nociceptors, plays a major role in human pain, and its abundance in the plasma membrane is tightly regulated. We have recently characterized the anterograde axonal trafficking of NaV1.7 channels in Rab6A-positive vesicles, but the fate of internalized channels is not known. Membrane proteins that have undergone endocytosis can be directed into multiple pathways including those for degradation, recycling to the membrane, and transcytosis. Here, we demonstrate NaV1.7 endocytosis and dynein-dependent retrograde trafficking in Rab7-containing late endosomes together with other axonal membrane proteins using real-time imaging of live neurons. We show that some internalized NaV1.7 channels are delivered to lysosomes within the cell body, and that there is no evidence for NaV1.7 transcytosis. In addition, we show that NaV1.7 is recycled specifically to the axonal membrane as opposed to the soma membrane, suggesting a novel mechanism for the development of neuronal polarity. Together, these results shed light on the mechanisms by which neurons maintain excitable membranes and may inform efforts to target ion channel trafficking for the treatment of disorders of excitability.


Asunto(s)
Axones , Canal de Sodio Activado por Voltaje NAV1.7 , Células Receptoras Sensoriales , Humanos , Potenciales de Acción/fisiología , Axones/metabolismo , Canales Iónicos/metabolismo , Proteínas de la Membrana/metabolismo , Células Receptoras Sensoriales/metabolismo , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo
4.
Neuroimage ; 297: 120721, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38968977

RESUMEN

Individuals with congenital heart disease (CHD) have an increased risk of neurodevelopmental impairments. Given the hypothesized complexity linking genomics, atypical brain structure, cardiac diagnoses and their management, and neurodevelopmental outcomes, unsupervised methods may provide unique insight into neurodevelopmental variability in CHD. Using data from the Pediatric Cardiac Genomics Consortium Brain and Genes study, we identified data-driven subgroups of individuals with CHD from measures of brain structure. Using structural magnetic resonance imaging (MRI; N = 93; cortical thickness, cortical volume, and subcortical volume), we identified subgroups that differed primarily on cardiac anatomic lesion and language ability. In contrast, using diffusion MRI (N = 88; white matter connectivity strength), we identified subgroups that were characterized by differences in associations with rare genetic variants and visual-motor function. This work provides insight into the differential impacts of cardiac lesions and genomic variation on brain growth and architecture in patients with CHD, with potentially distinct effects on neurodevelopmental outcomes.


Asunto(s)
Encéfalo , Cardiopatías Congénitas , Imagen por Resonancia Magnética , Humanos , Cardiopatías Congénitas/patología , Cardiopatías Congénitas/diagnóstico por imagen , Cardiopatías Congénitas/genética , Femenino , Masculino , Niño , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Adolescente , Adulto Joven , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Adulto , Preescolar , Imagen de Difusión por Resonancia Magnética , Trastornos del Neurodesarrollo/diagnóstico por imagen , Trastornos del Neurodesarrollo/patología , Trastornos del Neurodesarrollo/genética
5.
Magn Reson Med ; 91(6): 2459-2482, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38282270

RESUMEN

PURPOSE: To develop and evaluate methods for (1) reconstructing 3D-quantification using an interleaved Look-Locker acquisition sequence with T2 preparation pulse (3D-QALAS) time-series images using a low-rank subspace method, which enables accurate and rapid T1 and T2 mapping, and (2) improving the fidelity of subspace QALAS by combining scan-specific deep-learning-based reconstruction and subspace modeling. THEORY AND METHODS: A low-rank subspace method for 3D-QALAS (i.e., subspace QALAS) and zero-shot deep-learning subspace method (i.e., Zero-DeepSub) were proposed for rapid and high fidelity T1 and T2 mapping and time-resolved imaging using 3D-QALAS. Using an ISMRM/NIST system phantom, the accuracy and reproducibility of the T1 and T2 maps estimated using the proposed methods were evaluated by comparing them with reference techniques. The reconstruction performance of the proposed subspace QALAS using Zero-DeepSub was evaluated in vivo and compared with conventional QALAS at high reduction factors of up to nine-fold. RESULTS: Phantom experiments showed that subspace QALAS had good linearity with respect to the reference methods while reducing biases and improving precision compared to conventional QALAS, especially for T2 maps. Moreover, in vivo results demonstrated that subspace QALAS had better g-factor maps and could reduce voxel blurring, noise, and artifacts compared to conventional QALAS and showed robust performance at up to nine-fold acceleration with Zero-DeepSub, which enabled whole-brain T1, T2, and PD mapping at 1 mm isotropic resolution within 2 min of scan time. CONCLUSION: The proposed subspace QALAS along with Zero-DeepSub enabled high fidelity and rapid whole-brain multiparametric quantification and time-resolved imaging.


Asunto(s)
Imagen por Resonancia Magnética , Imágenes de Resonancia Magnética Multiparamétrica , Imagen por Resonancia Magnética/métodos , Imagenología Tridimensional/métodos , Reproducibilidad de los Resultados , Encéfalo/diagnóstico por imagen , Fantasmas de Imagen
6.
J Pediatr ; : 114372, 2024 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-39428090

RESUMEN

OBJECTIVE: To assess if white matter injuries differ in symptomatic versus asymptomatic moyamoya-affected hemispheres using diffusion magnetic resonance imaging (dMRI) since there is controversy on when or if to revascularize children with asymptomatic moyamoya. STUDY DESIGN: We conducted a cross-sectional study of children with moyamoya who underwent dMRI prior to revascularization surgery as well as controls without moyamoya. We measured the fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) of white matter tracts in the watershed regions. Moyamoya-affected hemispheres were included if they did not have any visible stroke or infarct. Moyamoya-affected hemispheres were labeled "symptomatic" if transient ischemic attack (TIA), seizure, or movement disorder were localizable to that hemisphere, or if the child had headaches. Moyamoya-affected hemispheres were "asymptomatic" if the child did not have symptoms attributable to that hemisphere. Asymptomatic and symptomatic hemispheres were compared with each other and control children using ANOVA. RESULTS: We included 17 children with moyamoya with 26 moyamoya-affected hemispheres and 27 control children. Compared with controls MD, RD, and AD were higher in both symptomatic and asymptomatic moyamoya-affected hemispheres but were not significantly different from each other. CONCLUSION: Children with moyamoya without stroke or silent infarct have unrecognized white matter injury that is similar in both symptomatic and asymptomatic moyamoya-affected hemispheres, suggesting that symptoms do not accurately reflect moyamoya severity.

7.
Pediatr Res ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38907045

RESUMEN

BACKGROUND: Limited serial neuroimaging studies use magnetic resonance imaging (MRI) to define the evolution of hypoxic-ischemic insults to the brain of term infants and encompass both the primary injury and its secondary impact on cerebral development. The optimal timing of MRI to fully evaluate the impact of hypoxic-ischemic encephalopathy on brain development and associated neurodevelopmental sequelae remains unknown. METHODS: Goals: (a) review literature related to serial neuroimaging in term infants with HIE; (b) describe pilot data in two infants with HIE treated with therapeutic hypothermia who had a brain injury at day 3-5 and underwent four additional MRIs over the next 12 weeks of life and developmental evaluation at 24 months of age. RESULTS: Early MRI defines primary injury on diffusion-weighted imaging, yet the full impact may not be fully apparent until after 1 month of life. CONCLUSION: The full impact of an ischemic injury on the neonatal brain may not be fully visible until several weeks after the initial insult. This suggests the benefit of obtaining later time points for MRI to fully define the extent of injury and its neurodevelopmental impact. IMPACT: Few studies inform the nature of the evolution of brain injury with hypothermia in HIE, limiting understanding of potential neuroprotection. MRI is the standard of care for prognosis in infants with HIE, however timing for optimal prognostic prediction remains unclear. Insights from MRI after the first week of life may assist in defining the full extent of brain injury and prognostic significance. A pilot study using five MRI timepoints up to 3 months of age, is presented. More data is required with a systematic evaluation of the impact of early brain injury on brain development in term infants with HIE following TH.

8.
Ann Pharmacother ; : 10600280241278371, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39250171

RESUMEN

BACKGROUND: Evidence is inconclusive if early administration of subcutaneous (SQ) long-acting insulin (LAI) in management of diabetic ketoacidosis (DKA) improves outcomes. OBJECTIVE: This study compares early versus late administration of SQ LAI in time to DKA resolution. METHODS: This single-center, retrospective study included patients with DKA who received ≥12 hours of continuous intravenous insulin (CIVI) with LAI overlap. Patients were compared based on LAI administration time to CIVI initiation: Early (<12 hours) versus Late (≥12 hours). The DKA resolution is defined as blood glucose < 200 mg/dL and 2 of the following: anion gap < 12 mEq/L, pH > 7.35, or serum carbon dioxide >15 mEq/L. Outcomes included time to DKA resolution, length of stay (LOS), CIVI duration, and adverse events. RESULTS: A total of 27 patients were included in each group. Baseline characteristics were similar between both groups. There was no difference in time to DKA resolution, Early = 17.6 (13.9-26.8) hours versus Late = 19.2 (17.1-32.1) hours, P = 0.16. The Early group had shorter CIVI duration (Early = 19.5 ± 10.3 hours vs Late = 25.6 ± 8.4 hours, P = 0.02) and received less intravenous (IV) fluids in the first 36 hours (Early = 4.04 ± 2.12 L vs Late = 5.85 ± 2.24 L, P = 0.004). No differences were identified with adverse events, including hypoglycemia, or LOS. CONCLUSION AND RELEVANCE: Administration of SQ LAI < 12 hours did not decrease time to DKA resolution or LOS. Patients in the Early group had received a lower dose of LAI, shorter duration of CIVI infusion, and required less IV fluids within 36 hours of admission. This study supports the need for further research to determine the potential benefits of administering SQ insulin early in managing DKA.

9.
Brain Topogr ; 37(1): 88-101, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37737957

RESUMEN

INTRODUCTION: Literature lacks studies investigating the cortical generation of sleep spindles in drug-resistant epilepsy (DRE) and how they evolve after resection of the epileptogenic zone (EZ). Here, we examined sleep EEGs of children with focal DRE who became seizure-free after focal epilepsy surgery, and aimed to investigate the changes in the spindle generation before and after the surgery using low-density scalp EEG and electrical source imaging (ESI). METHODS: We analyzed N2-sleep EEGs from 19 children with DRE before and after surgery. We identified slow (8-12 Hz) and fast spindles (13-16 Hz), computed their spectral features and cortical generators through ESI and computed their distance from the EZ and irritative zone (IZ). We performed two-way ANOVA testing the effect of spindle type (slow vs. fast) and surgical phase (pre-surgery vs. post-surgery) on each feature. RESULTS: Power, frequency and cortical activation of slow spindles increased after surgery (p < 0.005), while this was not seen for fast spindles. Before surgery, the cortical generators of slow spindles were closer to the EZ (57.3 vs. 66.2 mm, p = 0.007) and IZ (41.3 vs. 55.5 mm, p = 0.02) than fast spindle generators. CONCLUSIONS: Our data indicate alterations in the EEG slow spindles after resective epilepsy surgery. Fast spindle generation on the contrary did not change after surgery. Although the study is limited by its retrospective nature, lack of healthy controls, and reduced cortical spatial sampling, our findings suggest a spatial relationship between the slow spindles and the epileptogenic generators.


Asunto(s)
Epilepsia Refractaria , Epilepsias Parciales , Epilepsia , Niño , Humanos , Estudios Retrospectivos , Epilepsia/diagnóstico por imagen , Epilepsia/cirugía , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/cirugía , Sueño/fisiología , Electroencefalografía/métodos
10.
Nature ; 556(7701): 370-375, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29643508

RESUMEN

The human cerebral cortex is distinguished by its large size and abundant gyrification, or folding. However, the evolutionary mechanisms that drive cortical size and structure are unknown. Although genes that are essential for cortical developmental expansion have been identified from the genetics of human primary microcephaly (a disorder associated with reduced brain size and intellectual disability) 1 , studies of these genes in mice, which have a smooth cortex that is one thousand times smaller than the cortex of humans, have provided limited insight. Mutations in abnormal spindle-like microcephaly-associated (ASPM), the most common recessive microcephaly gene, reduce cortical volume by at least 50% in humans2-4, but have little effect on the brains of mice5-9; this probably reflects evolutionarily divergent functions of ASPM10,11. Here we used genome editing to create a germline knockout of Aspm in the ferret (Mustela putorius furo), a species with a larger, gyrified cortex and greater neural progenitor cell diversity12-14 than mice, and closer protein sequence homology to the human ASPM protein. Aspm knockout ferrets exhibit severe microcephaly (25-40% decreases in brain weight), reflecting reduced cortical surface area without significant change in cortical thickness, as has been found in human patients3,4, suggesting that loss of 'cortical units' has occurred. The cortex of fetal Aspm knockout ferrets displays a very large premature displacement of ventricular radial glial cells to the outer subventricular zone, where many resemble outer radial glia, a subtype of neural progenitor cells that are essentially absent in mice and have been implicated in cerebral cortical expansion in primates12-16. These data suggest an evolutionary mechanism by which ASPM regulates cortical expansion by controlling the affinity of ventricular radial glial cells for the ventricular surface, thus modulating the ratio of ventricular radial glial cells, the most undifferentiated cell type, to outer radial glia, a more differentiated progenitor.


Asunto(s)
Evolución Biológica , Corteza Cerebral/anatomía & histología , Corteza Cerebral/metabolismo , Hurones , Eliminación de Gen , Microcefalia/genética , Microcefalia/patología , Proteínas del Tejido Nervioso/deficiencia , Secuencia de Aminoácidos , Animales , Proteínas de Unión a Calmodulina/deficiencia , Proteínas de Unión a Calmodulina/metabolismo , Centrosoma/metabolismo , Corteza Cerebral/patología , Modelos Animales de Enfermedad , Femenino , Hurones/anatomía & histología , Hurones/genética , Edición Génica , Regulación del Desarrollo de la Expresión Génica , Técnicas de Inactivación de Genes , Mutación de Línea Germinal , Humanos , Masculino , Ratones , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Tamaño de los Órganos , Transcripción Genética
11.
J Neurosci ; 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35589395

RESUMEN

Neuronal excitability relies on coordinated action of functionally distinct ion channels. Voltage-gated sodium (NaV) and potassium (KV) channels have distinct but complementary roles in firing action potentials: NaV channels provide depolarizing current while KV channels provide hyperpolarizing current. Mutations and dysfunction of multiple NaV and KV channels underlie disorders of excitability, including pain and epilepsy. Modulating ion channel trafficking may offer a potential therapeutic strategy for these diseases. A fundamental question, however, is whether these channels with distinct functional roles are transported independently or packaged together in the same vesicles in sensory axons. We have used Optical Pulse-Chase Axonal Long-distance (OPAL) imaging to investigate trafficking of NaV and KV channels and other axonal proteins from distinct functional classes in live rodent sensory neurons (from male and female rats). We show that, similar to NaV1.7 channels, NaV1.8 and KV7.2 channels are transported in Rab6a-positive vesicles, and that each of the NaV channel isoforms expressed in healthy, mature sensory neurons - NaV1.6, NaV1.7, NaV1.8, and NaV1.9 - are co-transported in the same vesicles. Further, we show that multiple axonal membrane proteins with different physiological functions - NaV1.7, KV7.2, and TNFR1 - are co-transported in the same vesicles. However, vesicular packaging of axonal membrane proteins is not indiscriminate, since another axonal membrane protein - NCX2 - is transported in separate vesicles. These results shed new light on the development and organization of sensory neuron membranes, revealing complex sorting of axonal proteins with diverse physiological functions into specific transport vesicles.Significance StatementNormal neuronal excitability is dependent on precise regulation of membrane proteins including NaV and KV channels, and imbalance in the level of these channels at the plasma membrane could lead to excitability disorders. Ion channel trafficking could potentially be targeted therapeutically, which would require better understanding of the mechanisms underlying trafficking of functionally diverse channels. Optical Pulse-chase Axonal Long-distance (OPAL) imaging in live neurons permitted examination of the specificity of ion channel trafficking, revealing co-packaging of axonal proteins with opposing physiological functions into the same transport vesicles. This suggests that additional trafficking mechanisms are necessary to regulate levels of surface channels and reveals an important consideration for therapeutic strategies that target ion channel trafficking for the treatment of excitability disorders.

12.
Circulation ; 145(15): 1108-1119, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35143287

RESUMEN

BACKGROUND: Neurodevelopmental impairment is common in children with congenital heart disease (CHD), but postnatal variables explain only 30% of the variance in outcomes. To explore whether the antecedents for neurodevelopmental disabilities might begin in utero, we analyzed whether fetal brain volume predicted subsequent neurodevelopmental outcome in children with CHD. METHODS: Fetuses with isolated CHD and sociodemographically comparable healthy control fetuses underwent fetal brain magnetic resonance imaging and 2-year neurodevelopmental evaluation with the Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III) and the Adaptive Behavior Assessment System, Third Edition (ABAS-3). Hierarchical regression evaluated potential predictors of Bayley-III and ABAS-3 outcomes in the CHD group, including fetal total brain volume adjusted for gestational age and sex, sociodemographic characteristics, birth measures, and medical history. RESULTS: The CHD group (n=52) had lower Bayley-III cognitive, language, and motor scores than the control group (n=26), but fetal brain volumes were similar. Within the CHD group, larger fetal total brain volume correlated with higher Bayley-III cognitive, language, and motor scores and ABAS-3 adaptive functioning scores (r=0.32-0.47; all P<0.05), but this was not noted in the control group. Fetal brain volume predicted 10% to 21% of the variance in neurodevelopmental outcome measures in univariate analyses. Multivariable models that also included social class and postnatal factors explained 18% to 45% of the variance in outcome, depending on developmental domain. Moreover, in final multivariable models, fetal brain volume was the most consistent predictor of neurodevelopmental outcome across domains. CONCLUSIONS: Small fetal brain volume is a strong independent predictor of 2-year neurodevelopmental outcomes and may be an important imaging biomarker of future neurodevelopmental risk in CHD. Future studies are needed to support this hypothesis. Our findings support inclusion of fetal brain volume in risk stratification models and as a possible outcome in fetal neuroprotective intervention studies.


Asunto(s)
Cardiopatías Congénitas , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Desarrollo Infantil , Femenino , Feto , Edad Gestacional , Cardiopatías Congénitas/diagnóstico por imagen , Cardiopatías Congénitas/patología , Humanos , Lactante , Imagen por Resonancia Magnética/métodos , Embarazo
13.
Oncologist ; 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37368355

RESUMEN

BACKGROUND: Even though cytoreductive nephrectomy (CN) was once the standard of care for patients with advanced renal cell carcinoma (RCC), its role in treatment has not been well analyzed or defined in the era of immunotherapy (IO). MATERIALS AND METHODS: This study analyzed pathological outcomes in patients with advanced or metastatic RCC who received IO prior to CN. This was a multi-institutional, retrospective study of patients with advanced or metastatic RCC. Patients were required to receive IO monotherapy or combination therapy prior to radical or partial CN. The primary endpoint assessed surgical pathologic outcomes, including American Joint Committee on Cancer (AJCC) staging and frequency of downstaging, at the time of surgery. Pathologic outcomes were correlated to clinical variables using a Wald-chi squared test from Cox regression in a multi-variable analysis. Secondary outcomes included objective response rate (ORR) defined by response evaluation criteria in solid tumors (RECIST) version 1.1 and progression-free survival (PFS), which were estimated using the Kaplan-Meier method with reported 95% CIs. RESULTS: Fifty-two patients from 9 sites were included. Most patients were male (65%), 81% had clear cell histology, 11% had sarcomatoid differentiation. Overall, 44% of patients experienced pathologic downstaging, and 13% had a complete pathologic response. The ORR immediately prior to nephrectomy was stable disease in 29% of patients, partial response in 63%, progressive disease in 4%, and 4% unknown. Median follow-up for the entire cohort was 25.3 months and median PFS was 3.5 years (95% CI, 2.1-4.9). CONCLUSIONS: IO-based interventions prior to CN in patients with advanced or metastatic RCC demonstrates efficacy, with a small fraction of patients showing a complete response. Additional prospective studies are warranted to investigate the role of CN in the modern IO-era.

14.
Hum Brain Mapp ; 44(12): 4572-4589, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37417795

RESUMEN

Distinct neural effects of threat versus deprivation emerge by childhood, but little data are available in infancy. Withdrawn versus negative parenting may represent dimensionalized indices of early deprivation versus early threat, but no studies have assessed neural correlates of withdrawn versus negative parenting in infancy. The objective of this study was to separately assess the links of maternal withdrawal and maternal negative/inappropriate interaction with infant gray matter volume (GMV), white matter volume (WMV), amygdala, and hippocampal volume. Participants included 57 mother-infant dyads. Withdrawn and negative/inappropriate aspects of maternal behavior were coded from the Still-Face Paradigm at four months infant age. Between 4 and 24 months (M age = 12.28 months, SD = 5.99), during natural sleep, infants completed an MRI using a 3.0 T Siemens scanner. GMV, WMV, amygdala, and hippocampal volumes were extracted via automated segmentation. Diffusion weighted imaging volumetric data were also generated for major white matter tracts. Maternal withdrawal was associated with lower infant GMV. Negative/inappropriate interaction was associated with lower overall WMV. Age did not moderate these effects. Maternal withdrawal was further associated with reduced right hippocampal volume at older ages. Exploratory analyses of white matter tracts found that negative/inappropriate maternal behavior was specifically associated with reduced volume in the ventral language network. Results suggest that quality of day-to-day parenting is related to infant brain volumes during the first two years of life, with distinct aspects of interaction associated with distinct neural effects.


Asunto(s)
Sustancia Blanca , Femenino , Humanos , Lactante , Niño , Sustancia Blanca/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen , Corteza Cerebral , Imagen por Resonancia Magnética/métodos , Madres , Conducta Materna , Encéfalo/diagnóstico por imagen
15.
Dev Neurosci ; 45(3): 105-114, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36538911

RESUMEN

Early variations of fetal movements are the hallmark of a healthy developing central nervous system. However, there are no automatic methods to quantify the complex 3D motion of the developing fetus in utero. The aim of this prospective study was to use machine learning (ML) on in utero MRI to perform quantitative kinematic analysis of fetal limb movement, assessing the impact of maternal, placental, and fetal factors. In this cross-sectional, observational study, we used 76 sets of fetal (24-40 gestational weeks [GW]) blood oxygenation level-dependent (BOLD) MRI scans of 52 women (18-45 years old) during typical pregnancies. Pregnant women were scanned for 5-10 min while breathing room air (21% O2) and for 5-10 min while breathing 100% FiO2 in supine and/or lateral position. BOLD acquisition time was 20 min in total with effective temporal resolution approximately 3 s. To quantify upper and lower limb kinematics, we used a 3D convolutional neural network previously trained to track fetal key points (wrists, elbows, shoulders, ankles, knees, hips) on similar BOLD time series. Tracking was visually assessed, errors were manually corrected, and the absolute movement time (AMT) for each joint was calculated. To identify variables that had a significant association with AMT, we constructed a mixed-model ANOVA with interaction terms. Fetuses showed significantly longer duration of limb movements during maternal hyperoxia. We also found a significant centrifugal increase of AMT across limbs and significantly longer AMT of upper extremities <31 GW and longer AMT of lower extremities >35 GW. In conclusion, using ML we successfully quantified complex 3D fetal limb motion in utero and across gestation, showing maternal factors (hyperoxia) and fetal factors (gestational age, joint) that impact movement. Quantification of fetal motion on MRI is a potential new biomarker of fetal health and neuromuscular development.


Asunto(s)
Hiperoxia , Placenta , Embarazo , Femenino , Humanos , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Estudios Prospectivos , Estudios Transversales , Movimiento Fetal , Feto , Imagen por Resonancia Magnética/métodos , Aprendizaje Automático
16.
Magn Reson Med ; 90(5): 2019-2032, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37415389

RESUMEN

PURPOSE: To develop and evaluate a method for rapid estimation of multiparametric T1 , T2 , proton density, and inversion efficiency maps from 3D-quantification using an interleaved Look-Locker acquisition sequence with T2 preparation pulse (3D-QALAS) measurements using self-supervised learning (SSL) without the need for an external dictionary. METHODS: An SSL-based QALAS mapping method (SSL-QALAS) was developed for rapid and dictionary-free estimation of multiparametric maps from 3D-QALAS measurements. The accuracy of the reconstructed quantitative maps using dictionary matching and SSL-QALAS was evaluated by comparing the estimated T1 and T2 values with those obtained from the reference methods on an International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom. The SSL-QALAS and the dictionary-matching methods were also compared in vivo, and generalizability was evaluated by comparing the scan-specific, pre-trained, and transfer learning models. RESULTS: Phantom experiments showed that both the dictionary-matching and SSL-QALAS methods produced T1 and T2 estimates that had a strong linear agreement with the reference values in the International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom. Further, SSL-QALAS showed similar performance with dictionary matching in reconstructing the T1 , T2 , proton density, and inversion efficiency maps on in vivo data. Rapid reconstruction of multiparametric maps was enabled by inferring the data using a pre-trained SSL-QALAS model within 10 s. Fast scan-specific tuning was also demonstrated by fine-tuning the pre-trained model with the target subject's data within 15 min. CONCLUSION: The proposed SSL-QALAS method enabled rapid reconstruction of multiparametric maps from 3D-QALAS measurements without an external dictionary or labeled ground-truth training data.


Asunto(s)
Imagen por Resonancia Magnética , Protones , Reproducibilidad de los Resultados , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Aprendizaje Automático Supervisado , Procesamiento de Imagen Asistido por Computador/métodos
17.
AJR Am J Roentgenol ; 220(3): 418-427, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36169547

RESUMEN

BACKGROUND. The opioid epidemic has profoundly affected infants born in the United States, as in utero opioid exposure increases the risk of cognitive and behavioral problems in childhood. Scarce literature has evaluated prenatal brain development in fetuses with opioid exposure in utero (hereafter opioid-exposed fetuses). OBJECTIVE. The purpose of this study is to compare opioid-exposed fetuses and fetuses without opioid exposure (hereafter unexposed fetuses) in terms of 2D biometric measurements of the brain and additional pregnancy-related assessments on fetal MRI. METHODS. This prospective case-control study included patients in the third trimester of pregnancy who underwent investigational fetal MRI at one of three U.S. academic medical centers from July 1, 2020, through December 31, 2021. Fetuses were classified as opioid exposed or unexposed in utero. Fourteen 2D biometric measurements of the fetal brain were manually assessed and used to derive four indexes. Measurements and indexes were compared between the two groups by use of multivariable linear regression models, which were adjusted for gestational age (GA), fetal sex, and nicotine exposure. Additional pregnancy-related findings on MRI were evaluated. RESULTS. The study included 65 women (mean age, 29.0 ± 5.5 [SD] years). A total of 28 fetuses (mean GA at the time of MRI, 32.2 ± 2.5 weeks) were opioid-exposed, and 37 fetuses (mean GA at the time of MRI, 31.9 ± 2.7 weeks) were unexposed. In the adjusted models, seven measurements were smaller (p < .05) in opioid-exposed fetuses than in unexposed fetuses: cerebral frontooccipital diameter (93.8 ± 7.4 vs 95.0 ± 8.6 mm), bone biparietal diameter (79.0 ± 6.0 vs 80.3 ± 7.1 mm), brain biparietal diameter (72.9 ± 7.7 vs 74.1 ± 8.6 mm), corpus callosum length (37.7 ± 4.0 vs 39.4 ± 3.7 mm), vermis height (18.2 ± 2.7 vs 18.8 ± 2.6 mm), anteroposterior pons measurement (11.6 ± 1.4 vs 12.1 ± 1.4 mm), and transverse cerebellar diameter (40.4 ± 5.1 vs 41.4 ± 6.0 mm). In addition, in the adjusted model, the frontoocccipital index was larger (p = .02) in opioid-exposed fetuses (0.04 ± 0.02) than in unexposed fetuses (0.04 ± 0.02). Remaining measures and indexes were not significantly different between the two groups (p > .05). Fetal motion, cervical length, and deepest vertical pocket of amniotic fluid were not significantly different (p > .05) between groups. Opioid-exposed fetuses, compared with unexposed fetuses, showed higher frequencies of both breech position (21% vs 3%, p = .03) and increased amniotic fluid volume (29% vs 8%, p = .04). CONCLUSION. Fetuses with opioid exposure in utero had a smaller brain size and altered fetal physiology. CLINICAL IMPACT. The findings provide insight into the impact of prenatal opioid exposure on fetal brain development.


Asunto(s)
Analgésicos Opioides , Encéfalo , Embarazo , Lactante , Humanos , Femenino , Adulto Joven , Adulto , Tercer Trimestre del Embarazo , Estudios de Casos y Controles , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Edad Gestacional , Feto , Ultrasonografía Prenatal/métodos
18.
Angew Chem Int Ed Engl ; 62(23): e202301611, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-36973914

RESUMEN

Low-valent metal-organic frameworks (LVMOFs) and related materials have gained interest due to their potential applications in heterogeneous catalysis. However, of the few LVMOFs that have been reported, none have shown catalytic activity. Herein, a low-valent metal-organic material constructed from phosphine linkers and IrI nodes is reported. This material is effectively a crystalline, insoluble analogue of Vaska's complex. As such, the material reversibly binds O2 and catalyzes the reductive formation of enamines from amides.

19.
Neuroimage ; 263: 119629, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36115591

RESUMEN

Human fetal brains show regionally different temporal patterns of sulcal emergence following a regular timeline, which may be associated with spatiotemporal patterns of gene expression among cortical regions. This study aims to quantify the timing of sulcal emergence and its temporal variability across typically developing fetuses by fitting a logistic curve to presence or absence of sulcus. We found that the sulcal emergence started from the central to the temporo-parieto-occipital lobes and frontal lobe, and the temporal variability of emergence in most of the sulci was similar between 1 and 2 weeks. Small variability (< 1 week) was found in the left central and postcentral sulci and larger variability (>2 weeks) was shown in the bilateral occipitotemporal and left superior temporal sulci. The temporal variability showed a positive correlation with the emergence timing that may be associated with differential contributions between genetic and environmental factors. Our statistical analysis revealed that the right superior temporal sulcus emerged earlier than the left. Female fetuses showed a trend of earlier sulcal emergence in the right superior temporal sulcus, lower temporal variability in the right intraparietal sulcus, and higher variability in the right precentral sulcus compared to male fetuses. Our quantitative and statistical approach quantified the temporal patterns of sulcal emergence in detail that can be a reference for assessing the normality of developing fetal gyrification.


Asunto(s)
Caracteres Sexuales , Lóbulo Temporal , Humanos , Masculino , Femenino , Lóbulo Temporal/diagnóstico por imagen , Feto , Lóbulo Parietal , Lóbulo Frontal , Imagen por Resonancia Magnética , Corteza Cerebral/diagnóstico por imagen
20.
N Engl J Med ; 381(17): 1644-1652, 2019 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-31597037

RESUMEN

Genome sequencing is often pivotal in the diagnosis of rare diseases, but many of these conditions lack specific treatments. We describe how molecular diagnosis of a rare, fatal neurodegenerative condition led to the rational design, testing, and manufacture of milasen, a splice-modulating antisense oligonucleotide drug tailored to a particular patient. Proof-of-concept experiments in cell lines from the patient served as the basis for launching an "N-of-1" study of milasen within 1 year after first contact with the patient. There were no serious adverse events, and treatment was associated with objective reduction in seizures (determined by electroencephalography and parental reporting). This study offers a possible template for the rapid development of patient-customized treatments. (Funded by Mila's Miracle Foundation and others.).


Asunto(s)
Proteínas de Transporte de Membrana/genética , Mutagénesis Insercional , Lipofuscinosis Ceroideas Neuronales/tratamiento farmacológico , Lipofuscinosis Ceroideas Neuronales/genética , Oligonucleótidos Antisentido/uso terapéutico , Medicina de Precisión , Enfermedades Raras/tratamiento farmacológico , Biopsia , Niño , Desarrollo Infantil , Descubrimiento de Drogas , Drogas en Investigación/uso terapéutico , Electroencefalografía , Femenino , Humanos , Pruebas Neuropsicológicas , ARN Mensajero , Convulsiones/diagnóstico , Convulsiones/tratamiento farmacológico , Piel/patología , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA