Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Proteome Res ; 17(3): 946-960, 2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-28994599

RESUMEN

With the increase in incidence of type 1 diabetes (T1DM), there is an urgent need to understand the early molecular and metabolic alterations that accompany the autoimmune disease. This is not least because in murine models early intervention can prevent the development of disease. We have applied a liquid chromatography (LC-) and gas chromatography (GC-) mass spectrometry (MS) metabolomics and lipidomics analysis of blood plasma and pancreas tissue to follow the progression of disease in three models related to autoimmune diabetes: the nonobese diabetic (NOD) mouse, susceptible to the development of autoimmune diabetes, and the NOD-E (transgenic NOD mice that express the I-E heterodimer of the major histocompatibility complex II) and NOD-severe combined immunodeficiency (SCID) mouse strains, two models protected from the development of diabetes. All three analyses highlighted the metabolic differences between the NOD-SCID mouse and the other two strains, regardless of diabetic status indicating that NOD-SCID mice are poor controls for metabolic changes in NOD mice. By comparing NOD and NOD-E mice, we show the development of T1DM in NOD mice is associated with changes in lipid, purine, and tryptophan metabolism, including an increase in kynurenic acid and a decrease in lysophospholipids, metabolites previously associated with inflammation.


Asunto(s)
Diabetes Mellitus Tipo 1/metabolismo , Islotes Pancreáticos/metabolismo , Metabolismo de los Lípidos , Estado Prediabético/metabolismo , Purinas/metabolismo , Triptófano/metabolismo , Animales , Autoinmunidad , Cromatografía Liquida , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/patología , Análisis Discriminante , Modelos Animales de Enfermedad , Femenino , Cromatografía de Gases y Espectrometría de Masas , Expresión Génica , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase II/inmunología , Islotes Pancreáticos/inmunología , Islotes Pancreáticos/patología , Ácido Quinurénico/metabolismo , Lisofosfolípidos/metabolismo , Metabolómica/métodos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Ratones Transgénicos , Estado Prediabético/inmunología , Estado Prediabético/patología , Análisis de Componente Principal , Multimerización de Proteína
2.
Anal Chem ; 88(16): 7921-9, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27437557

RESUMEN

In a typical metabolomics experiment, two or more conditions (e.g., treated versus untreated) are compared, in order to investigate the potential differences in the metabolic profiles. When dealing with complex biological systems, a two-class classification is often unsuitable, since it does not consider the unpredictable differences between samples (e.g., nonresponder to treatment). An approach based on statistical process control (SPC), which is able to monitor the response to a treatment or the development of a pathological condition, is proposed here. Such an approach has been applied to an experimental hepatocarcinogenesis model to discover early individual metabolic variations associated with a different response to the treatment. Liver study was performed by nuclear magnetic resonance (NMR) spectroscopy, followed by multivariate statistical analysis. By this approach, we were able to (1) identify which treated samples have a significantly different metabolic profile, compared to the control (in fact, as confirmed by immunohistochemistry, the method correctly classified 7 responders and 3 nonresponders among the 10 treated animals); (2) recognize, for each individual sample, the metabolites that are out of control (e.g., glutathione, acetate, betaine, and phosphocholine). The first point could be used for classification purposes, and the second point could be used for a better understanding of the mechanisms underlying the early phase of carcinogenesis. The statistical control approach can be used for diagnosis (e.g., healthy versus pathological, responder versus nonresponder) and for generation of an individual metabolic profile, leading to a better understanding of the individual pathological processes and to a personalized diagnosis and therapy.


Asunto(s)
Neoplasias Hepáticas Experimentales/metabolismo , Metabolómica , Modelos Estadísticos , Animales , Análisis Discriminante , Reacciones Falso Positivas , Neoplasias Hepáticas Experimentales/patología , Análisis de Componente Principal , Ratas , Ratas Endogámicas F344
3.
Artículo en Inglés | MEDLINE | ID: mdl-38488044

RESUMEN

CONTEXT: Alterations in the lipid metabolism are linked to metabolic disorders such as insulin resistance (IR), obesity and type 2 diabetes (T2D). Regular exercise, particularly combined training (CT), is a well-known non-pharmacological treatment that combines aerobic (AT) and resistance (RT) training benefits. However, it is unclear whether moderate-intensity exercise without dietary intervention induces changes in lipid metabolism to promote a 'healthy lipidome'. OBJECTIVE: The study aimed to investigate the effect of 16 weeks of CT on plasma and white adipose tissue in both sexes, middle-aged subjects with normal weight, obesity and T2D using an ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) untargeted lipidomics approach. METHODS: Body composition, maximum oxygen consumption (VO2 max), strength, and biochemical markers were evaluated before and after the control/training period and correlated with lipid changes. CT consisted of 8 to 10 RT exercises, followed by 35 min of AT (45 -70% VO2 max), 3 times a week for 16 weeks. RESULTS: The CT significantly reduced the levels of saturated and monounsaturated fatty acid side-chains (SFA/MUFA) in sphingolipids, glycerolipids (GL) and glycerophospholipids (GP) as well as reducing fat mass, circumferences and IR. Increased levels of polyunsaturated fatty acids in GPs, and GLs were also observed, along with increased fat-free mass, VO2 max, and strength (all p < 0.05) after training. CONCLUSION: Our study stated that 16 weeks of moderate-intensity CT remodelled the lipid metabolism in OB, and T2D individuals, even without dietary intervention, establishing a link between exercise-modulated lipid markers and mechanisms that reduce IR and obesity-related comorbidities.

4.
Antioxidants (Basel) ; 10(5)2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34065197

RESUMEN

High-dose of vitamin C (L-ascorbic acid, ascorbate) exhibits anti-tumoral effects, primarily mediated by pro-oxidant mechanisms. This cytotoxic effect is thought to affect the reciprocal crosstalk between redox balance and cell metabolism in different cancer types. Vitamin C also inhibits the growth of papillary thyroid carcinoma (PTC) cells, although the metabolic and redox effects remain to be fully understood. To shed light on these aspects, PTC-derived cell lines harboring the most common genetic alterations characterizing this tumor were used. Cell viability, apoptosis, and the metabolome were explored by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide test (MTT), flow cytometry, and UHPLC/MS. Changes were observed in redox homeostasis, with increased reactive oxygen species (ROS) level and perturbation in antioxidants and electron carriers, leading to cell death by both apoptosis and necrosis. The oxidative stress contributed to the metabolic alterations in both glycolysis and TCA cycle. Our results confirm the pro-oxidant effect of vitamin C as relevant in triggering the cytotoxicity in PTC cells and suggest that inhibition of glycolysis and alteration of TCA cycle via NAD+ depletion can play an important role in this mechanism of PTC cancer cell death.

5.
Metabolites ; 9(2)2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30717187

RESUMEN

Background: Thyroid cancer is the most common endocrine malignancy, with papillary thyroid carcinoma (PTC) being the most common (85⁻90%) among all the different types of thyroid carcinomas. Cancer cells show metabolic alterations and, due to their rapid proliferation, an accumulation of reactive oxygen species, playing a fundamental role in cancer development and progression. Currently, the crosstalk among thyrocytes metabolism, redox balance and oncogenic mutations remain poorly characterized. The aim of this study was to investigate the interplay among metabolic alterations, redox homeostasis and oncogenic mutations in PTC-derived cells. Methods: Metabolic and redox profile, glutamate-cysteine ligase, glutaminase-1 and metabolic transporters were evaluated in PTC-derived cell lines with distinguished genetic background (TPC-1, K1 and B-CPAP), as well as in an immortalized thyroid cell line (Nthy-ori3-1) selected as control. Results: PTC-derived cells, particularly B-CPAP cells, harboring BRAF, TP53 and human telomerase reverse transcriptase (hTERT) mutation, displayed an increase of metabolites and transporters involved in energetic pathways. Furthermore, all PTC-derived cells showed altered redox homeostasis, as reported by the decreased antioxidant ratios, as well as the increased levels of intracellular oxidant species. Conclusion: Our findings confirmed the pivotal role of the metabolism and redox state regulation in the PTC biology. Particularly, the most perturbed metabolic phenotypes were found in B-CPAP cells, which are characterized by the most aggressive genetic background.

6.
Sci Rep ; 8(1): 4993, 2018 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-29555958

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

7.
Sci Rep ; 7(1): 9523, 2017 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-28842640

RESUMEN

Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract of uncertain origin, which includes ulcerative colitis (UC) and Crohn's disease (CD). The composition of gut microbiota may change in IBD affected individuals, but whether dysbiosis is the cause or the consequence of inflammatory processes in the intestinal tissue is still unclear. Here, the composition of the microbiota and the metabolites in stool of 183 subjects (82 UC, 50 CD, and 51 healthy controls) were determined. The metabolites content and the microbiological profiles were significantly different between IBD and healthy subjects. In the IBD group, Firmicutes, Proteobacteria, Verrucomicrobia, and Fusobacteria were significantly increased, whereas Bacteroidetes and Cyanobacteria were decreased. At genus level Escherichia, Faecalibacterium, Streptococcus, Sutterella and Veillonella were increased, whereas Bacteroides, Flavobacterium, and Oscillospira decreased. Various metabolites including biogenic amines, amino acids, lipids, were significantly increased in IBD, while others, such as two B group vitamins, were decreased in IBD compared to healthy subjects. This study underlines the potential role of an inter-omics approach in understanding the metabolic pathways involved in IBD. The combined evaluation of metabolites and fecal microbiome can be useful to discriminate between healthy subjects and patients with IBD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA