Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Clin Orthop Relat Res ; 482(2): 291-300, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37594401

RESUMEN

BACKGROUND: Pharmacogenomics is an emerging and affordable tool that may improve postoperative pain control. One challenge to successful pain control is the large interindividual variability among analgesics in their efficacy and adverse drug events. Whether preoperative pharmacogenomic testing is worthwhile for patients undergoing TKA is unclear. QUESTIONS/PURPOSES: (1) Are the results of preoperative pharmacogenetic testing associated with lower postoperative pain scores as measured by the Overall Benefit of Analgesic Score (OBAS)? (2) Do the results of preoperative pharmacogenomic testing lead to less total opioids given? (3) Do the results of preoperative pharmacogenomic testing lead to changes in opioid prescribing patterns? METHODS: Participants of this randomized trial were enrolled from September 2018 through December 2021 if they were aged 18 to 80 years and were undergoing primary TKA under general anesthesia. Patients were excluded if they had chronic kidney disease, a history of chronic pain or narcotic use before surgery, or if they were undergoing robotic surgery. Preoperatively, patients completed pharmacogenomic testing (RightMed, OneOME) and a questionnaire and were randomly assigned to the experimental group or control group. Of 99 patients screened, 23 were excluded, one before randomization; 11 allocated patients in each group did not receive their allocated interventions for reasons such as surgery canceled, patients ultimately undergoing spinal anesthesia, and change in surgery plan. Another four patients in each group were excluded from the analysis because they were missing an OBAS report. This left 30 patients for analysis in the control group and 38 patients in the experimental group. The control and experimental groups were similar in age, gender, and race. Pharmacogenomic test results for patients in the experimental group were reviewed before surgery by a pharmacist, who recommended perioperative medications to the clinical team. A pharmacist also assessed for clinically relevant drug-gene interactions and recommended drug and dose selection according to guidelines from the Clinical Pharmacogenomics Implementation Consortium for each patient enrolled in the study. Patients were unaware of their pharmacogenomic results. Pharmacogenomic test results for patients in the control group were not reviewed before surgery; instead, standard perioperative medications were administered in adherence to our institutional care pathways. The OBAS (maximum 28 points) was the primary outcome measure, recorded 24 hours postoperatively. A two-sample t-test was used to compare the mean OBAS between groups. Secondary measures were the mean 24-hour pain score, total morphine milligram equivalent, and frequency of opioid use. Postoperatively, patients were assessed for pain with a VAS (range 0 to 10). Opioid use was recorded preoperatively, intraoperatively, in the postanesthesia care unit, and 24 hours after discharge from the postanesthesia care unit. Changes in perioperative opioid use based on pharmacogenomic testing were recorded, as were changes in prescription patterns for postoperative pain control. Preoperative characteristics were also compared between patients with and without various phenotypes ascertained from pharmacogenomic test results. RESULTS: The mean OBAS did not differ between groups (mean ± SD 4.7 ± 3.7 in the control group versus 4.2 ± 2.8 in the experimental group, mean difference 0.5 [95% CI -1.1 to 2.1]; p = 0.55). Total opioids given did not differ between groups or at any single perioperative timepoint (preoperative, intraoperative, or postoperative). We found no difference in opioid prescribing pattern. After adjusting for multiple comparisons, no difference was observed between the treatment and control groups in tramadol use (41% versus 71%, proportion difference 0.29 [95% CI 0.05 to 0.53]; nominal p = 0.02; adjusted p > 0.99). CONCLUSION: Routine use of pharmacogenomic testing for patients undergoing TKA did not lead to better pain control or decreased opioid consumption. Future studies might focus on at-risk populations, such as patients with chronic pain or those undergoing complex, painful surgical procedures, to test whether pharmacogenomic results might be beneficial in certain circumstances. LEVEL OF EVIDENCE: Level I, therapeutic study.


Asunto(s)
Artroplastia de Reemplazo de Rodilla , Dolor Crónico , Femenino , Humanos , Masculino , Analgésicos , Analgésicos Opioides/uso terapéutico , Artroplastia de Reemplazo de Rodilla/efectos adversos , Dolor Crónico/diagnóstico , Dolor Crónico/tratamiento farmacológico , Dolor Crónico/genética , Dolor Postoperatorio/genética , Dolor Postoperatorio/prevención & control , Pruebas de Farmacogenómica , Pautas de la Práctica en Medicina , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años
2.
Cardiovasc Drugs Ther ; 32(1): 121-126, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29435777

RESUMEN

PURPOSE: There is growing interest in the use of pharmacogenomics to optimize the safety and efficacy of anticoagulation therapy. While the pharmacogenomics of warfarin have been well-studied, the pharmacogenomics of direct oral anticoagulants (DOACs) continue to be a fledgling, but growing, field of interest. We present a pertinent clinical review of the present state of research on the pharmacogenomics of DOACs. METHODS AND RESULTS: The present article is a review of pertinent clinical and scientific research on the pharmacogenomics of DOACs between January 2008 and December 2017 using MEDLINE and the United States National Institutes of Health Clinical Trials Registry. Many studies have identified single-nucleotide polymorphisms (SNPs) in genes responsible for DOAC metabolism that impacted serum DOAC concentration but had uncertain clinical significance. CONCLUSIONS: As such, there is currently no strong evidence for the use of pharmacogenomic testing in optimizing the safety and efficacy of DOAC therapy. Nonetheless, genes of interest have been identified for each DOAC that may be of potential clinical utility. Further research is currently underway to elucidate the value of pharmacogenomics in this increasingly prescribed therapy.


Asunto(s)
Anticoagulantes/administración & dosificación , Farmacogenética/métodos , Variantes Farmacogenómicas , Polimorfismo de Nucleótido Simple , Administración Oral , Anticoagulantes/efectos adversos , Anticoagulantes/sangre , Anticoagulantes/farmacocinética , Biotransformación/efectos de los fármacos , Toma de Decisiones Clínicas , Genotipo , Humanos , Pruebas de Farmacogenómica , Fenotipo , Medicina de Precisión , Factores de Riesgo , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA