RESUMEN
The presence of ribonucleotides in genomic DNA is undesirable given their increased susceptibility to hydrolysis. Ribonuclease (RNase) H enzymes that recognize and process such embedded ribonucleotides are present in all domains of life. However, in unicellular organisms such as budding yeast, they are not required for viability or even efficient cellular proliferation, while in humans, RNase H2 hypomorphic mutations cause the neuroinflammatory disorder Aicardi-Goutières syndrome. Here, we report that RNase H2 is an essential enzyme in mice, required for embryonic growth from gastrulation onward. RNase H2 null embryos accumulate large numbers of single (or di-) ribonucleotides embedded in their genomic DNA (>1,000,000 per cell), resulting in genome instability and a p53-dependent DNA-damage response. Our findings establish RNase H2 as a key mammalian genome surveillance enzyme required for ribonucleotide removal and demonstrate that ribonucleotides are the most commonly occurring endogenous nucleotide base lesion in replicating cells.
Asunto(s)
Replicación del ADN , Embrión de Mamíferos/metabolismo , Ribonucleasa H/genética , Ribonucleasa H/metabolismo , Ribonucleótidos/metabolismo , Animales , Inestabilidad Cromosómica , ADN Polimerasa Dirigida por ADN/metabolismo , Células Madre Embrionarias/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismoRESUMEN
Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 × 10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice.
Asunto(s)
COVID-19/genética , COVID-19/fisiopatología , Enfermedad Crítica , 2',5'-Oligoadenilato Sintetasa/genética , COVID-19/patología , Cromosomas Humanos Par 12/genética , Cromosomas Humanos Par 19/genética , Cromosomas Humanos Par 21/genética , Cuidados Críticos , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/genética , Reposicionamiento de Medicamentos , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Inflamación/genética , Inflamación/patología , Inflamación/fisiopatología , Pulmón/patología , Pulmón/fisiopatología , Pulmón/virología , Masculino , Familia de Multigenes/genética , Receptor de Interferón alfa y beta/genética , Receptores CCR2/genética , TYK2 Quinasa/genética , Reino UnidoRESUMEN
Enhancers can regulate the promoters of their target genes over very large genomic distances. It is widely assumed that mechanisms of enhancer action involve the reorganization of three-dimensional chromatin architecture, but this is poorly understood. The predominant model involves physical enhancer-promoter interaction by looping out the intervening chromatin. However, studying the enhancer-driven activation of the Sonic hedgehog gene (Shh), we have identified a change in chromosome conformation that is incompatible with this simple looping model. Using super-resolution 3D-FISH and chromosome conformation capture, we observe a decreased spatial proximity between Shh and its enhancers during the differentiation of embryonic stem cells to neural progenitors. We show that this can be recapitulated by synthetic enhancer activation, is impeded by chromatin-bound proteins located between the enhancer and the promoter, and appears to involve the catalytic activity of poly (ADP-ribose) polymerase. Our data suggest that models of enhancer-promoter communication need to encompass chromatin conformations other than looping.
Asunto(s)
Ensamble y Desensamble de Cromatina , Elementos de Facilitación Genéticos , Proteínas Hedgehog/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Neurogénesis , Neuronas/metabolismo , Regiones Promotoras Genéticas , Activación Transcripcional , Animales , Línea Celular , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/genética , Ratones , Modelos Genéticos , Neurogénesis/genética , Conformación de Ácido Nucleico , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismoRESUMEN
Vitamin D deficiency is associated with risk of several common cancers, including colorectal cancer (CRC). Here we have utilized patient derived epithelial organoids (ex vivo) and CRC cell lines (in vitro) to show that calcitriol (1,25OHD) increased the expression of the CRC tumor suppressor gene, CDH1, at both the transcript and protein level. Whole genome expression analysis demonstrated significant differential expression of a further six genes after 1,25OHD treatment, including genes with established links to carcinogenesis GADD45, EFTUD1 and KIAA1199. Furthermore, gene ontologies relevant to carcinogenesis were enriched by 1,25OHD treatment (e.g., 'regulation of Wnt signaling pathway', 'regulation of cell death'), with common enriched processes across in vitro and ex vivo cultures including 'negative regulation of cell proliferation', 'regulation of cell migration' and 'regulation of cell differentiation'. Our results identify genes and pathways that are modifiable by calcitriol that have links to CRC tumorigenesis. Hence the findings provide potential mechanism to the epidemiological and clinical trial data indicating a causal association between vitamin D and CRC. We suggest there is strong rationale for further well-designed trials of vitamin D supplementation as a novel CRC chemopreventive and chemotherapeutic agent.
Asunto(s)
Antineoplásicos/farmacología , Carcinogénesis/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteínas de Neoplasias/biosíntesis , Neoplasias/metabolismo , Transcriptoma/efectos de los fármacos , Vitamina D/análogos & derivados , Células CACO-2 , Células HCT116 , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Vitamina D/farmacologíaRESUMEN
Site-specific variation in colorectal cancer (CRC) incidence, biology and prognosis are poorly understood. We sought to determine whether common genetic variants influencing CRC risk might exhibit topographical differences on CRC risk through regional differences in effects on gene expression in the large bowel mucosa. We conducted a site-specific genetic association study (10 630 cases, 31 331 controls) to identify whether established risk variants exert differential effects on risk of proximal, compared to distal CRC. We collected normal colorectal mucosa and blood from 481 subjects and assessed mucosal gene expression using Illumina HumanHT-12v4 arrays in relation to germline genotype. Expression quantitative trait loci (eQTLs) were explored by anatomical location of sampling. The rs3087967 genotype (chr11q23.1 risk variant) exhibited significant site-specific effects-risk of distal CRC (odds ratio [OR] = 1.20, P = 8.20 × 10-20 ) with negligible effects on proximal CRC risk (OR = 1.05, P = .10). Expression of 1261 genes differed between proximal and distal colonic mucosa (top hit PRAC gene, fold-difference = 10, P = 3.48 × 10-57 ). In eQTL studies, rs3087967 genotype was associated with expression of 8 cis- and 21 trans-genes. Four of these (AKAP14, ADH5P4, ASGR2, RP11-342M1.7) showed differential effects by site, with strongest trans-eQTL signals in proximal colonic mucosa (eg, AKAP14, beta = 0.61, P = 5.02 × 10-5 ) and opposite signals in distal mucosa (AKAP14, beta = -0.17, P = .04). In summary, genetic variation at the chr11q23.1 risk locus imparts greater risk of distal rather than proximal CRC and exhibits site-specific differences in eQTL effects in normal mucosa. Topographical differences in genomic control over gene expression relevant to CRC risk may underlie site-specific variation in CRC. Results may inform individualised CRC screening programmes.
Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Colorrectales/genética , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Mucosa Intestinal/metabolismo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Neoplasias Colorrectales/etiología , Neoplasias Colorrectales/patología , Femenino , Estudios de Seguimiento , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Mucosa Intestinal/patología , Masculino , Persona de Mediana Edad , Pronóstico , Factores de Riesgo , Transcriptoma , Adulto JovenRESUMEN
Aicardi-Goutières syndrome (AGS) provides a monogenic model of nucleic acid-mediated inflammation relevant to the pathogenesis of systemic autoimmunity. Mutations that impair ribonuclease (RNase) H2 enzyme function are the most frequent cause of this autoinflammatory disorder of childhood and are also associated with systemic lupus erythematosus. Reduced processing of eitherRNA:DNAhybrid or genome-embedded ribonucleotide substrates is thought to lead to activation of a yet undefined nucleic acid-sensing pathway. Here, we establishRnaseh2b(A174T/A174T)knock-in mice as a subclinical model of disease, identifying significant interferon-stimulated gene (ISG) transcript upregulation that recapitulates theISGsignature seen inAGSpatients. The inflammatory response is dependent on the nucleic acid sensor cyclicGMP-AMPsynthase (cGAS) and its adaptorSTINGand is associated with reduced cellular ribonucleotide excision repair activity and increasedDNAdamage. This suggests thatcGAS/STINGis a key nucleic acid-sensing pathway relevant toAGS, providing additional insight into disease pathogenesis relevant to the development of therapeutics for this childhood-onset interferonopathy and adult systemic autoimmune disorders.
Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso/genética , Inmunidad Innata/genética , Proteínas de la Membrana/inmunología , Mutación Missense , Malformaciones del Sistema Nervioso/genética , Nucleotidiltransferasas/inmunología , Ribonucleasa H/genética , Ribonucleasas/genética , Animales , Enfermedades Autoinmunes del Sistema Nervioso/inmunología , Enfermedades Autoinmunes del Sistema Nervioso/metabolismo , Autoinmunidad/genética , Daño del ADN , Regulación de la Expresión Génica , Humanos , Interferones/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Mutantes , Malformaciones del Sistema Nervioso/inmunología , Malformaciones del Sistema Nervioso/metabolismo , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Ribonucleasa H/metabolismoRESUMEN
Long noncoding RNAs (lncRNAs) have been implicated in various biological functions including the regulation of gene expression, however, the functionality of lncRNAs is not clearly understood and conflicting conclusions have often been reached when comparing different methods to investigate them. Moreover, little is known about the upstream regulation of lncRNAs. Here we show that the short isoform (p52) of a transcriptional co-activator-PC4 and SF2 interacting protein (Psip1), which is known to be involved in linking transcription to RNA processing, specifically regulates the expression of the lncRNA Hottip-located at the 5' end of the Hoxa locus. Using both knockdown and knockout approaches we show that Hottip expression is required for activation of the 5' Hoxa genes (Hoxa13 and Hoxa10/11) and for retaining Mll1 at the 5' end of Hoxa. Moreover, we demonstrate that artificially inducing Hottip expression is sufficient to activate the 5' Hoxa genes and that Hottip RNA binds to the 5' end of Hoxa. By engineering premature transcription termination, we show that it is the Hottip lncRNA molecule itself, not just Hottip transcription that is required to maintains active expression of posterior Hox genes. Our data show a direct role for a lncRNA molecule in regulating the expression of developmentally-regulated mRNA genes in cis.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de Homeodominio/genética , ARN Largo no Codificante/genética , Factores de Transcripción/genética , Transcripción Genética , Proteínas Adaptadoras Transductoras de Señales/biosíntesis , Proliferación Celular/genética , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Proteínas Homeobox A10 , Humanos , Procesamiento Postranscripcional del ARN/genética , ARN Largo no Codificante/biosíntesis , Factores de Transcripción/biosíntesisRESUMEN
How polycomb group proteins repress gene expression in vivo is not known. While histone-modifying activities of the polycomb repressive complexes (PRCs) have been studied extensively, in vitro data have suggested a direct activity of the PRC1 complex in compacting chromatin. Here, we investigate higher-order chromatin compaction of polycomb targets in vivo. We show that PRCs are required to maintain a compact chromatin state at Hox loci in embryonic stem cells (ESCs). There is specific decompaction in the absence of PRC2 or PRC1. This is due to a PRC1-like complex, since decompaction occurs in Ring1B null cells that still have PRC2-mediated H3K27 methylation. Moreover, we show that the ability of Ring1B to restore a compact chromatin state and to repress Hox gene expression is not dependent on its histone ubiquitination activity. We suggest that Ring1B-mediated chromatin compaction acts to directly limit transcription in vivo.
Asunto(s)
Ensamble y Desensamble de Cromatina , Células Madre Embrionarias/metabolismo , Histonas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Represoras/metabolismo , Acetilación , Animales , Diferenciación Celular , Línea Celular , Regulación hacia Abajo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Metilación , Ratones , Mutación , Complejo Represivo Polycomb 1 , Complejo Represivo Polycomb 2 , Proteínas del Grupo Polycomb , Proteínas Represoras/genética , Transcripción Genética , Ubiquitina-Proteína Ligasas , UbiquitinaciónRESUMEN
Trithorax and polycomb group proteins are generally thought to antagonize one another. The trithorax family member MLL (myeloid/lymphoid or mixed-lineage leukemia) is presumed to activate Hox expression, counteracting polycomb-mediated repression. PC4 and SF2 interacting protein 1 (PSIP1)/p75, also known as LEDGF, whose PWWP domain binds to H3K36me3, interacts with MLL and tethers MLL fusion proteins to HOXA9 in leukaemias. Here we show, unexpectedly, that Psip1/p75 regulates homeotic genes by recruiting not only MLL complexes, but also the polycomb group protein Bmi1. In Psip1(-/-) cells binding of Mll1/2, Bmi1 and the co-repressor Ctbp1 at Hox loci are all abrogated and Hoxa and Hoxd mRNA expression increased. Our data not only reveal a potential mechanism of action for Psip1 in the regulation of Hox genes but also suggest an unexpected interplay between proteins usually considered as transcriptional activators and repressors.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Regulación de la Expresión Génica , Genes Homeobox , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Complejo Represivo Polycomb 1/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/fisiología , Oxidorreductasas de Alcohol/metabolismo , Animales , Células Cultivadas , Proteínas de Unión al ADN/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ratones , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/fisiologíaRESUMEN
A late phase of HoxD activation is crucial for the patterning and growth of distal structures across the anterior-posterior (A-P) limb axis of mammals. Polycomb complexes and chromatin compaction have been shown to regulate Hox loci along the main body axis in embryonic development, but the extent to which they have a role in limb-specific HoxD expression, an evolutionary adaptation defined by the activity of distal enhancer elements that drive expression of 5' Hoxd genes, has yet to be fully elucidated. We reveal two levels of chromatin topology that differentiate distal limb A-P HoxD activity. Using both immortalised cell lines derived from posterior and anterior regions of distal E10.5 mouse limb buds, and analysis in E10.5 dissected limb buds themselves, we show that there is a loss of polycomb-catalysed H3K27me3 histone modification and a chromatin decompaction over HoxD in the distal posterior limb compared with anterior. Moreover, we show that the global control region (GCR) long-range enhancer spatially colocalises with the 5' HoxD genomic region specifically in the distal posterior limb. This is consistent with the formation of a chromatin loop between 5' HoxD and the GCR regulatory module at the time and place of distal limb bud development when the GCR participates in initiating Hoxd gene quantitative collinearity and Hoxd13 expression. This is the first example of A-P differences in chromatin compaction and chromatin looping in the development of the mammalian secondary body axis (limb).
Asunto(s)
Tipificación del Cuerpo/fisiología , Ensamble y Desensamble de Cromatina/fisiología , Extremidades/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/metabolismo , Animales , Western Blotting , Línea Celular , Inmunoprecipitación de Cromatina , Cartilla de ADN/genética , Regulación del Desarrollo de la Expresión Génica/genética , Histonas/metabolismo , Procesamiento de Imagen Asistido por Computador , Hibridación Fluorescente in Situ , Ratones , Microscopía Fluorescente , Proteínas del Grupo Polycomb , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Represoras/metabolismoRESUMEN
The nonsense-mediated mRNA decay (NMD) pathway selectively degrades mRNAs harboring premature termination codons but also regulates the abundance of cellular RNAs. We sought to identify transcripts that are regulated by two novel NMD factors, DHX34 and neuroblastoma amplified sequence (NBAS), which were identified in a genome-wide RNA interference screen in Caenorhabditis elegans and later shown to mediate NMD in vertebrates. We performed microarray expression profile analysis in human cells, zebrafish embryos and C. elegans that were individually depleted of these factors. Our analysis revealed that a significant proportion of genes are co-regulated by DHX34, NBAS and core NMD factors in these three organisms. Further analysis indicates that NMD modulates cellular stress response pathways and membrane trafficking across species. Interestingly, transcripts encoding different NMD factors were sensitive to DHX34 and NBAS depletion, suggesting that these factors participate in a conserved NMD negative feedback regulatory loop, as was recently described for core NMD factors. In summary, we find that DHX34 and NBAS act in concert with core NMD factors to co-regulate a large number of endogenous RNA targets. Furthermore, the conservation of a mechanism to tightly control NMD homeostasis across different species highlights the importance of the NMD response in the control of gene expression.
Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Degradación de ARNm Mediada por Codón sin Sentido , ARN Helicasas/fisiología , Proteínas de Pez Cebra/fisiología , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Evolución Molecular , Perfilación de la Expresión Génica , Células HeLa , Homeostasis , Humanos , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/fisiología , ARN Helicasas/antagonistas & inhibidores , ARN Mensajero/metabolismo , Transactivadores/fisiología , Pez Cebra/genética , Proteínas de Pez Cebra/antagonistas & inhibidoresRESUMEN
Increasing evidence suggests that chromatin modifications have important roles in modulating constitutive or alternative splicing. Here we demonstrate that the PWWP domain of the chromatin-associated protein Psip1/Ledgf can specifically recognize tri-methylated H3K36 and that, like this histone modification, the Psip1 short (p52) isoform is enriched at active genes. We show that the p52, but not the long (p75), isoform of Psip1 co-localizes and interacts with Srsf1 and other proteins involved in mRNA processing. The level of H3K36me3 associated Srsf1 is reduced in Psip1 mutant cells and alternative splicing of specific genes is affected. Moreover, we show altered Srsf1 distribution around the alternatively spliced exons of these genes in Psip1 null cells. We propose that Psip1/p52, through its binding to both chromatin and splicing factors, might act to modulate splicing.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Empalme Alternativo/genética , Histonas , Isoformas de Proteínas , Factores de Transcripción/genética , Células 3T3 , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Cromatina/genética , Cromatina/metabolismo , Fibroblastos/citología , Regulación de la Expresión Génica , Histonas/genética , Histonas/metabolismo , Metilación , Ratones , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Factores de Empalme Serina-Arginina , Factores de Transcripción/metabolismoRESUMEN
Heterozygous missense variants and in-frame indels in SMC3 are a cause of Cornelia de Lange syndrome (CdLS), marked by intellectual disability, growth deficiency, and dysmorphism, via an apparent dominant-negative mechanism. However, the spectrum of manifestations associated with SMC3 loss-of-function variants has not been reported, leading to hypotheses of alternative phenotypes or even developmental lethality. We used matchmaking servers, patient registries, and other resources to identify individuals with heterozygous, predicted loss-of-function (pLoF) variants in SMC3, and analyzed population databases to characterize mutational intolerance in this gene. Here, we show that SMC3 behaves as an archetypal haploinsufficient gene: it is highly constrained against pLoF variants, strongly depleted for missense variants, and pLoF variants are associated with a range of developmental phenotypes. Among 14 individuals with SMC3 pLoF variants, phenotypes were variable but coalesced on low growth parameters, developmental delay/intellectual disability, and dysmorphism, reminiscent of atypical CdLS. Comparisons to individuals with SMC3 missense/in-frame indel variants demonstrated an overall milder presentation in pLoF carriers. Furthermore, several individuals harboring pLoF variants in SMC3 were nonpenetrant for growth, developmental, and/or dysmorphic features, and some had alternative symptomatologies with rational biological links to SMC3. Analyses of tumor and model system transcriptomic data and epigenetic data in a subset of cases suggest that SMC3 pLoF variants reduce SMC3 expression but do not strongly support clustering with functional genomic signatures of typical CdLS. Our finding of substantial population-scale LoF intolerance in concert with variable growth and developmental features in subjects with SMC3 pLoF variants expands the scope of cohesinopathies, informs on their allelic architecture, and suggests the existence of additional clearly LoF-constrained genes whose disease links will be confirmed only by multilayered genomic data paired with careful phenotyping.
Asunto(s)
Síndrome de Cornelia de Lange , Discapacidad Intelectual , Humanos , Proteínas de Ciclo Celular/genética , Proteoglicanos Tipo Condroitín Sulfato/genética , Proteínas Cromosómicas no Histona/genética , Síndrome de Cornelia de Lange/genética , Heterocigoto , Discapacidad Intelectual/genética , Mutación , FenotipoRESUMEN
Polycomb repressive complex 1 (PRC1) strongly influences 3D genome organization, mediating local chromatin compaction and clustering of target loci. Several PRC1 subunits have the capacity to form biomolecular condensates through liquid-liquid phase separation in vitro and when tagged and over-expressed in cells. Here, we use 1,6-hexanediol, which can disrupt liquid-like condensates, to examine the role of endogenous PRC1 biomolecular condensates on local and chromosome-wide clustering of PRC1-bound loci. Using imaging and chromatin immunoprecipitation, we show that PRC1-mediated chromatin compaction and clustering of targeted genomic loci-at different length scales-can be reversibly disrupted by the addition and subsequent removal of 1,6-hexanediol to mouse embryonic stem cells. Decompaction and dispersal of polycomb domains and clusters cannot be solely attributable to reduced PRC1 occupancy detected by chromatin immunoprecipitation following 1,6-hexanediol treatment as the addition of 2,5-hexanediol has similar effects on binding despite this alcohol not perturbing PRC1-mediated 3D clustering, at least at the sub-megabase and megabase scales. These results suggest that weak hydrophobic interactions between PRC1 molecules may have a role in polycomb-mediated genome organization.
Asunto(s)
Cromatina , Proteínas de Drosophila , Animales , Ratones , Complejo Represivo Polycomb 1 , Núcleo Celular , Proteínas del Grupo PolycombRESUMEN
Centrosomes are orbited by centriolar satellites, dynamic multiprotein assemblies nucleated by Pericentriolar material 1 (PCM1). To study the requirement for centriolar satellites, we generated mice lacking PCM1, a crucial component of satellites. Pcm1-/- mice display partially penetrant perinatal lethality with survivors exhibiting hydrocephalus, oligospermia, and cerebellar hypoplasia, and variably expressive phenotypes such as hydronephrosis. As many of these phenotypes have been observed in human ciliopathies and satellites are implicated in cilia biology, we investigated whether cilia were affected. PCM1 was dispensable for ciliogenesis in many cell types, whereas Pcm1-/- multiciliated ependymal cells and human PCM1-/- retinal pigmented epithelial 1 (RPE1) cells showed reduced ciliogenesis. PCM1-/- RPE1 cells displayed reduced docking of the mother centriole to the ciliary vesicle and removal of CP110 and CEP97 from the distal mother centriole, indicating compromised early ciliogenesis. Similarly, Pcm1-/- ependymal cells exhibited reduced removal of CP110 from basal bodies in vivo. We propose that PCM1 and centriolar satellites facilitate efficient trafficking of proteins to and from centrioles, including the departure of CP110 and CEP97 to initiate ciliogenesis, and that the threshold to trigger ciliogenesis differs between cell types.
Asunto(s)
Centriolos , Cilios , Animales , Femenino , Humanos , Ratones , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centriolos/metabolismo , Centrosoma/metabolismo , Cilios/metabolismo , Proteínas del Citoesqueleto/metabolismoRESUMEN
Heterozygous missense variants and in-frame indels in SMC3 are a cause of Cornelia de Lange syndrome (CdLS), marked by intellectual disability, growth deficiency, and dysmorphism, via an apparent dominant-negative mechanism. However, the spectrum of manifestations associated with SMC3 loss-of-function variants has not been reported, leading to hypotheses of alternative phenotypes or even developmental lethality. We used matchmaking servers, patient registries, and other resources to identify individuals with heterozygous, predicted loss-of-function (pLoF) variants in SMC3, and analyzed population databases to characterize mutational intolerance in this gene. Here, we show that SMC3 behaves as an archetypal haploinsufficient gene: it is highly constrained against pLoF variants, strongly depleted for missense variants, and pLoF variants are associated with a range of developmental phenotypes. Among 13 individuals with SMC3 pLoF variants, phenotypes were variable but coalesced on low growth parameters, developmental delay/intellectual disability, and dysmorphism reminiscent of atypical CdLS. Comparisons to individuals with SMC3 missense/in-frame indel variants demonstrated a milder presentation in pLoF carriers. Furthermore, several individuals harboring pLoF variants in SMC3 were nonpenetrant for growth, developmental, and/or dysmorphic features, some instead having intriguing symptomatologies with rational biological links to SMC3 including bone marrow failure, acute myeloid leukemia, and Coats retinal vasculopathy. Analyses of transcriptomic and epigenetic data suggest that SMC3 pLoF variants reduce SMC3 expression but do not result in a blood DNA methylation signature clustering with that of CdLS, and that the global transcriptional signature of SMC3 loss is model-dependent. Our finding of substantial population-scale LoF intolerance in concert with variable penetrance in subjects with SMC3 pLoF variants expands the scope of cohesinopathies, informs on their allelic architecture, and suggests the existence of additional clearly LoF-constrained genes whose disease links will be confirmed only by multi-layered genomic data paired with careful phenotyping.
RESUMEN
ß-Defensins are cationic host defense peptides that form an amphipathic structure stabilized by three intramolecular disulfide bonds. They are key players in innate and adaptive immunity and have recently been shown to limit the production of pro-inflammatory cytokines in TLR4-stimulated macrophages. In the present study, we investigate the mechanism underlying the anti-inflammatory effect of human ß-defensin 3 (hBD3). We show that the canonical structure of hBD3 is required for this immunosuppressive effect and that hBD3 rapidly associates with and enters macrophages. Examination of the global effect of hBD3 on transcription in TLR4-stimulated macrophages shows that hBD3 inhibits the transcription of pro-inflammatory genes. Among the altered genes there is significant enrichment of groups involved in the positive regulation of NF-κB including components of Toll-like receptor signaling pathways. We confirm these observations by showing corresponding decreases in protein levels of pro-inflammatory cytokines and cell surface molecules. In addition, we show that hBD3 reduces NF-κB signaling in cells transfected with MyD88 or TRIF and that hBD3 inhibits the TLR4 response in both MyD88- and TRIF-deficient macrophages. Taken together these findings suggest that the mechanism of hBD3 anti-inflammatory activity involves specific targeting of TLR signaling pathways resulting in transcriptional repression of pro-inflammatory genes.
Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/inmunología , Expresión Génica/inmunología , Inflamación/inmunología , Factor 88 de Diferenciación Mieloide/inmunología , Transducción de Señal/inmunología , beta-Defensinas/inmunología , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Línea Celular , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunomodulación , Inflamación/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Factor 88 de Diferenciación Mieloide/metabolismo , Relación Estructura-Actividad , Transcripción Genética , beta-Defensinas/química , beta-Defensinas/metabolismoRESUMEN
Human centromeres appear as constrictions on mitotic chromosomes and form a platform for kinetochore assembly in mitosis. Biophysical experiments led to a suggestion that repetitive DNA at centromeric regions form a compact scaffold necessary for function, but this was revised when neocentromeres were discovered on non-repetitive DNA. To test whether centromeres have a special chromatin structure we have analysed the architecture of a neocentromere. Centromere repositioning is accompanied by RNA polymerase II recruitment and active transcription to form a decompacted, negatively supercoiled domain enriched in 'open' chromatin fibres. In contrast, centromerisation causes a spreading of repressive epigenetic marks to surrounding regions, delimited by H3K27me3 polycomb boundaries and divergent genes. This flanking domain is transcriptionally silent and partially remodelled to form 'compact' chromatin, similar to satellite-containing DNA sequences, and exhibits genomic instability. We suggest transcription disrupts chromatin to provide a foundation for kinetochore formation whilst compact pericentromeric heterochromatin generates mechanical rigidity.
Asunto(s)
Heterocromatina , Histonas , Centrómero/genética , Cromatina/genética , ADN/genética , ADN Satélite , Heterocromatina/genética , Histonas/genética , Humanos , ARN Polimerasa II/genéticaRESUMEN
Anophthalmia (missing eye) describes a failure of early embryonic ocular development. Mutations in a relatively small set of genes account for 75% of bilateral anophthalmia cases, yet 25% of families currently are left without a molecular diagnosis. Here, we report our experimental work that aimed to uncover the developmental and genetic basis of the anophthalmia characterising the X-linked Ie (eye-ear reduction) X-ray-induced allele in mouse that was first identified in 1947. Histological analysis of the embryonic phenotype showed failure of normal eye development after the optic vesicle stage with particularly severe malformation of the ventral retina. Linkage analysis mapped this mutation to a ~6 Mb region on the X chromosome. Short- and long-read whole-genome sequencing (WGS) of affected and unaffected male littermates confirmed the Ie linkage but identified no plausible causative variants or structural rearrangements. These analyses did reduce the critical candidate interval and revealed evidence of multiple variants within the ancestral DNA, although none were found that altered coding sequences or that were unique to Ie. To investigate early embryonic events at a genetic level, we then generated mouse ES cells derived from male Ie embryos and wild type littermates. RNA-seq and accessible chromatin sequencing (ATAC-seq) data generated from cultured optic vesicle organoids did not reveal any large differences in gene expression or accessibility of putative cis-regulatory elements between Ie and wild type. However, an unbiased TF-footprinting analysis of accessible chromatin regions did provide evidence of a genome-wide reduction in binding of transcription factors associated with ventral eye development in Ie, and evidence of an increase in binding of the Zic-family of transcription factors, including Zic3, which is located within the Ie-refined critical interval. We conclude that the refined Ie critical region at chrX: 56,145,000-58,385,000 contains multiple genetic variants that may be linked to altered cis regulation but does not contain a convincing causative mutation. Changes in the binding of key transcription factors to chromatin causing altered gene expression during development, possibly through a subtle mis-regulation of Zic3, presents a plausible cause for the anophthalmia phenotype observed in Ie, but further work is required to determine the precise causative allele and its genetic mechanism.
Asunto(s)
Anoftalmos , Ratones , Masculino , Animales , Anoftalmos/genética , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Cromatina , ADN , Proteínas de Homeodominio/genéticaRESUMEN
In addition to central functions in cell adhesion signalling, integrin-associated proteins have wider roles at sites distal to adhesion receptors. In experimentally defined adhesomes, we noticed that there is clear enrichment of proteins that localise to the nucleus, and conversely, we now report that nuclear proteomes contain a class of adhesome components that localise to the nucleus. We here define a nucleo-adhesome, providing experimental evidence for a remarkable scale of nuclear localisation of adhesion proteins, establishing a framework for interrogating nuclear adhesion protein functions. Adding to nuclear FAK's known roles in regulating transcription, we now show that nuclear FAK regulates expression of many adhesion-related proteins that localise to the nucleus and that nuclear FAK binds to the adhesome component and nuclear protein Hic-5. FAK and Hic-5 work together in the nucleus, co-regulating a subset of genes transcriptionally. We demonstrate the principle that there are subcomplexes of nuclear adhesion proteins that cooperate to control transcription.