Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 609(7929): 1005-1011, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36131016

RESUMEN

Lysosomes have many roles, including degrading macromolecules and signalling to the nucleus1. Lysosomal dysfunction occurs in various human conditions, such as common neurodegenerative diseases and monogenic lysosomal storage disorders (LSDs)2-4. For most LSDs, the causal genes have been identified but, in some, the function of the implicated gene is unknown, in part because lysosomes occupy a small fraction of the cellular volume so that changes in lysosomal contents are difficult to detect. Here we develop the LysoTag mouse for the tissue-specific isolation of intact lysosomes that are compatible with the multimodal profiling of their contents. We used the LysoTag mouse to study CLN3, a lysosomal transmembrane protein with an unknown function. In children, the loss of CLN3 causes juvenile neuronal ceroid lipofuscinosis (Batten disease), a lethal neurodegenerative LSD. Untargeted metabolite profiling of lysosomes from the brains of mice lacking CLN3 revealed a massive accumulation of glycerophosphodiesters (GPDs)-the end products of glycerophospholipid catabolism. GPDs also accumulate in the lysosomes of CLN3-deficient cultured cells and we show that CLN3 is required for their lysosomal egress. Loss of CLN3 also disrupts glycerophospholipid catabolism in the lysosome. Finally, we found elevated levels of glycerophosphoinositol in the cerebrospinal fluid of patients with Batten disease, suggesting the potential use of glycerophosphoinositol as a disease biomarker. Our results show that CLN3 is required for the lysosomal clearance of GPDs and reveal Batten disease as a neurodegenerative LSD with a defect in glycerophospholipid metabolism.


Asunto(s)
Ésteres , Glicerofosfolípidos , Fosfatos de Inositol , Lisosomas , Glicoproteínas de Membrana , Chaperonas Moleculares , Animales , Biomarcadores/líquido cefalorraquídeo , Biomarcadores/metabolismo , Niño , Ésteres/metabolismo , Glicerofosfolípidos/líquido cefalorraquídeo , Glicerofosfolípidos/metabolismo , Humanos , Fosfatos de Inositol/líquido cefalorraquídeo , Fosfatos de Inositol/metabolismo , Enfermedades por Almacenamiento Lisosomal/líquido cefalorraquídeo , Enfermedades por Almacenamiento Lisosomal/genética , Enfermedades por Almacenamiento Lisosomal/metabolismo , Lisosomas/metabolismo , Lisosomas/patología , Glicoproteínas de Membrana/deficiencia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Lipofuscinosis Ceroideas Neuronales/líquido cefalorraquídeo , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(34): e2215777120, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37585464

RESUMEN

TRPML3 is a Ca2+/Na+ release channel residing in both phagophores and endolysosomal membranes. It is activated by PI3P and PI3,5P2. Its activity can be enhanced by high luminal pH and by replacing luminal Na+ with K+. Here, we report that big-conductance Ca2+-activated potassium (BK) channels form a positive feedback loop with TRPML3. Ca2+ release via TRPML3 activates BK, which in turn facilitates TRPML3-mediated Ca2+ release, potentially through removing luminal Na+ inhibition. We further show that TRPML3/BK and mammalian target of rapamycin (mTOR) form another positive feedback loop to facilitate autophagy induction in response to nutrient starvation, i.e., mTOR inhibition upon nutrient starvation activates TRPML3/BK, and this further reduces mTOR activity, thereby increasing autophagy induction. Mechanistically, the feedback regulation between TRPML3/BK and mTOR is mediated by PI3P, an endogenous TRPML3 activator that is enriched in phagophores and is up-regulated by mTOR reduction. Importantly, bacterial infection activates TRPML3 in a BK-dependent manner, and both TRPML3 and BK are required for mTOR suppression and autophagy induction responding to bacterial infection. Suppressing either TRPML3 or BK helps bacteria survival whereas increasing either TRPML3 or BK favors bacterial clearance. Considering that TRPML3/BK is inhibited by low luminal pH but activated by high luminal pH and PI3P in phagophores, we suggest that TRPML3/BK and mTOR form a positive feedback loop via PI3P to ensure efficient autophagy induction in response to nutrient deprivation and bacterial infection. Our study reveals a role of TRPML3-BK coupling in controlling cellular homeostasis and intracellular bacterial clearance via regulating mTOR signaling.


Asunto(s)
Canales de Potasio de Gran Conductancia Activados por el Calcio , Sirolimus , Retroalimentación , Canales de Potasio de Gran Conductancia Activados por el Calcio/fisiología , Autofagia , Bacterias , Serina-Treonina Quinasas TOR
3.
Proc Natl Acad Sci U S A ; 120(7): e2213682120, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36745816

RESUMEN

Oxytocin (OT) is a prominent regulator of many aspects of mammalian social behavior and stored in large dense-cored vesicles (LDCVs) in hypothalamic neurons. It is released in response to activity-dependent Ca2+ influx, but is also dependent on Ca2+ release from intracellular stores, which primes LDCVs for exocytosis. Despite its importance, critical aspects of the Ca2+-dependent mechanisms of its secretion remain to be identified. Here we show that lysosomes surround dendritic LDCVs, and that the direct activation of endolysosomal two-pore channels (TPCs) provides the critical Ca2+ signals to prime OT release by increasing the releasable LDCV pool without directly stimulating exocytosis. We observed a dramatic reduction in plasma OT levels in TPC knockout mice, and impaired secretion of OT from the hypothalamus demonstrating the importance of priming of neuropeptide vesicles for activity-dependent release. Furthermore, we show that activation of type 1 metabotropic glutamate receptors sustains somatodendritic OT release by recruiting TPCs. The priming effect could be mimicked by a direct application of nicotinic acid adenine dinucleotide phosphate, the endogenous messenger regulating TPCs, or a selective TPC2 agonist, TPC2-A1-N, or blocked by the antagonist Ned-19. Mice lacking TPCs exhibit impaired maternal and social behavior, which is restored by direct OT administration. This study demonstrates an unexpected role for lysosomes and TPCs in controlling neuropeptide secretion, and in regulating social behavior.


Asunto(s)
Canales de Calcio , Oxitocina , Ratones , Animales , Canales de Calcio/metabolismo , Oxitocina/metabolismo , Calcio/metabolismo , Ratones Noqueados , Lisosomas/metabolismo , NADP/metabolismo , Señalización del Calcio/fisiología , Mamíferos/metabolismo
4.
J Biol Chem ; 300(1): 105581, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38141765

RESUMEN

Metastasis still accounts for 90% of all cancer-related death cases. An increase of cellular mobility and invasive traits of cancer cells mark two crucial prerequisites of metastasis. Recent studies highlight the involvement of the endolysosomal cation channel TRPML1 in cell migration. Our results identified a widely antimigratory effect upon loss of TRPML1 function in a panel of cell lines in vitro and reduced dissemination in vivo. As mode-of-action, we established TRPML1 as a crucial regulator of cytosolic calcium levels, actin polymerization, and intracellular trafficking of two promigratory proteins: E-cadherin and ß1-integrin. Interestingly, KO of TRPML1 differentially interferes with the recycling process of E-cadherin and ß1-integrin in a cell line-dependant manner, while resulting in the same phenotype of decreased migratory and adhesive capacities in vitro. Additionally, we observed a coherence between reduction of E-cadherin levels at membrane site and phosphorylation of NF-κB in a ß-catenin/p38-mediated manner. As a result, an E-cadherin/NF-κB feedback loop is generated, regulating E-cadherin expression on a transcriptional level. Consequently, our findings highlight the role of TRPML1 as a regulator in migratory processes and suggest the ion channel as a suitable target for the inhibition of migration and invasion.


Asunto(s)
Cadherinas , Movimiento Celular , Integrina beta1 , Neoplasias , Canales de Potencial de Receptor Transitorio , Cadherinas/metabolismo , Línea Celular Tumoral , Integrina beta1/metabolismo , Neoplasias/metabolismo , FN-kappa B , Humanos , Lisosomas , Canales de Potencial de Receptor Transitorio/genética , Canales de Potencial de Receptor Transitorio/metabolismo , Animales , Ratones , Calcio/metabolismo , Transporte de Proteínas
5.
Rev Physiol Biochem Pharmacol ; 185: 259-276, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-32748124

RESUMEN

Among the infectious diseases caused by pathogenic microorganisms such as bacteria, viruses, parasites, or fungi, the most prevalent ones today are malaria, tuberculosis, influenza, HIV/AIDS, Ebola, dengue fever, and methicillin-resistant Staphylococcus aureus (MRSA) infection, and most recently Covid-19 (SARS-CoV2). Others with a rather devastating history and high fatality rates such as plague, cholera, or typhus seem less threatening today but have not been eradicated, and with a declining efficacy of current antibiotics they ought to be watched carefully. Another emerging issue in this context is health-care associated infection. About 100,000 hospitalized patients in the USA ( www.cdc.gov ) and 33,000 in Europe ( https://www.ecdc.europa.eu ) die each year as a direct consequence of an infection caused by bacteria resistant to antibiotics. Among viral infections, influenza is responsible for about 3-5 million cases of severe illness, and about 250,000 to 500,000 deaths annually ( www.who.int ). About 37 million people are currently living with HIV infection and about one million die from it each year. Coronaviruses such as MERS-CoV, SARS-CoV, but in particular the recent outbreak of Covid-19 (caused by SARS-CoV2) have resulted in large numbers of infections worldwide with an estimated several hundred thousand deaths (anticipated fatality rate: <5%). With a comparatively low mortality rate dengue virus causes between 50 and 100 million infections every year, leading to 50,000 deaths. In contrast, Ebola virus is the causative agent for one of the deadliest viral diseases. The Ebola outbreak in West Africa in 2014 is considered the largest outbreak in history with more than 11,000 deaths. Many of the deadliest pathogens such as Ebola virus, influenza virus, mycobacterium tuberculosis, dengue virus, and cholera exploit the endo-lysosomal trafficking system of host cells for penetration into the cytosol and replication. Defects in endo-lysosomal maturation, trafficking, fusion, or pH homeostasis can efficiently reduce the cytotoxicity caused by these pathogens. Most of these functions critically depend on endo-lysosomal membrane proteins such as transporters and ion channels. In particular, cation channels such as the mucolipins (TRPMLs) or the two-pore channels (TPCs) are involved in all of these aspects of endo-lysosomal integrity. In this review we will discuss the correlations between pathogen toxicity and endo-lysosomal cation channel function, and their potential as drug targets for infectious disease therapy.


Asunto(s)
COVID-19 , Cólera , Ebolavirus , Infecciones por VIH , Fiebre Hemorrágica Ebola , Gripe Humana , Staphylococcus aureus Resistente a Meticilina , Humanos , COVID-19/metabolismo , Fiebre Hemorrágica Ebola/metabolismo , Gripe Humana/metabolismo , Cólera/metabolismo , Infecciones por VIH/metabolismo , ARN Viral/metabolismo , SARS-CoV-2 , Lisosomas/metabolismo , Cationes/metabolismo
6.
J Immunol ; 211(9): 1348-1358, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37737664

RESUMEN

Cytotoxic lymphocytes eliminate cancer cells through the release of lytic granules, a specialized form of secretory lysosomes. This compartment is part of the pleomorphic endolysosomal system and is distinguished by its highly dynamic Ca2+ signaling machinery. Several transient receptor potential (TRP) calcium channels play essential roles in endolysosomal Ca2+ signaling and ensure the proper function of these organelles. In this study, we examined the role of TRPML1 (TRP cation channel, mucolipin subfamily, member 1) in regulating the homeostasis of secretory lysosomes and their cross-talk with mitochondria in human NK cells. We found that genetic deletion of TRPML1, which localizes to lysosomes in NK cells, led to mitochondrial fragmentation with evidence of collapsed mitochondrial cristae. Consequently, TRPML1-/- NK92 (NK92ML1-/-) displayed loss of mitochondrial membrane potential, increased reactive oxygen species stress, reduced ATP production, and compromised respiratory capacity. Using sensitive organelle-specific probes, we observed that mitochondria in NK92ML1-/- cells exhibited evidence of Ca2+ overload. Moreover, pharmacological activation of the TRPML1 channel in primary NK cells resulted in upregulation of LC3-II, whereas genetic deletion impeded autophagic flux and increased accumulation of dysfunctional mitochondria. Thus, TRPML1 impacts autophagy and clearance of damaged mitochondria. Taken together, these results suggest that an intimate interorganelle communication in NK cells is orchestrated by the lysosomal Ca2+ channel TRPML1.


Asunto(s)
Canales de Calcio , Canales de Potencial de Receptor Transitorio , Humanos , Canales de Calcio/metabolismo , Calcio/metabolismo , Canales de Potencial de Receptor Transitorio/genética , Canales de Potencial de Receptor Transitorio/metabolismo , Mitocondrias/metabolismo , Lisosomas/metabolismo , Células Asesinas Naturales/metabolismo
7.
J Physiol ; 602(8): 1623-1636, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38598430

RESUMEN

Two-pore channels and TRP mucolipins are ubiquitous endo-lysosomal cation channels of pathophysiological relevance. Both are Ca2+-permeable and regulated by phosphoinositides, principally PI(3,5)P2. Accumulating evidence has uncovered synergistic channel activation by PI(3,5)P2 and endogenous metabolites such as the Ca2+ mobilizing messenger NAADP, synthetic agonists including approved drugs and physical cues such as voltage and osmotic pressure. Here, we provide an overview of this coordination.


Asunto(s)
Canales de Calcio , Canales de Potencial de Receptor Transitorio , Canales de Calcio/metabolismo , Canales de Dos Poros , Calcio/metabolismo , Lisosomas/metabolismo , NADP/metabolismo , Presión Osmótica , Canales de Potencial de Receptor Transitorio/metabolismo
8.
J Cell Sci ; 135(6)2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35274126

RESUMEN

Liver cancers, including hepatocellular carcinoma (HCC), are the second leading cause of cancer death worldwide, and novel therapeutic strategies are still highly needed. Recently, the endolysosomal cation channel TRPML1 (also known as MCOLN1) has gained focus in cancer research because it represents an interesting novel target. We utilized the recently developed isoform-selective TRPML1 activator ML1-SA1 and the CRISPR/Cas9 system to generate tools for overactivation and loss-of-function studies on TRPML1 in HCC. After verification of our tools, we investigated the role of TRPML1 in HCC by studying proliferation, apoptosis and proteomic alterations. Furthermore, we analyzed mitochondrial function in detail by performing confocal and transmission electron microscopy combined with SeahorseTM and Oroboros® functional analysis. We report that TRPML1 overactivation mediated by a novel, isoform-selective small-molecule activator induces apoptosis by impairing mitochondrial function in a Ca2+-dependent manner. Additionally, TRPML1 loss-of-function deregulates mitochondrial renewal, which leads to proliferation impairment. Thus, our study reveals a novel role for TRPML1 as regulator of mitochondrial function and its modulators as promising molecules for novel therapeutic options in HCC therapy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Canales de Potencial de Receptor Transitorio , Calcio/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Lisosomas/metabolismo , Mitocondrias/metabolismo , Proteómica , Canales de Potencial de Receptor Transitorio/genética , Canales de Potencial de Receptor Transitorio/metabolismo
9.
PLoS Genet ; 17(1): e1009236, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33465068

RESUMEN

The endo-lysosomal two-pore channel (TPC2) has been established as an intracellular cation channel of significant physiological and pathophysiological relevance in recent years. For example, TPC2-/- mice show defects in cholesterol degradation, leading to hypercholesterinemia; TPC2 absence also results in mature-onset obesity, and a role in glucagon secretion and diabetes has been proposed. Infections with bacterial toxins or viruses e.g., cholera toxin or Ebola virus result in reduced infectivity rates in the absence of TPC2 or after pharmacological blockage, and TPC2-/- cancer cells lose their ability to migrate and metastasize efficiently. Finally, melanin production is affected by changes in hTPC2 activity, resulting in pigmentation defects and hair color variation. Here, we analyzed several publicly available genome variation data sets and identified multiple variations in the TPC2 protein in distinct human populations. Surprisingly, one variation, L564P, was found to be the predominant TPC2 isoform on a global scale. By applying endo-lysosomal patch-clamp electrophysiology, we found that L564P is a prerequisite for the previously described M484L gain-of-function effect that is associated with blond hair. Additionally, other gain-of-function variants with distinct geographical and ethnic distribution were discovered and functionally characterized. A meta-analysis of genome-wide association studies was performed, finding the polymorphisms to be associated with both distinct and overlapping traits. In sum, we present the first systematic analysis of variations in TPC2. We functionally characterized the most common variations and assessed their association with various disease traits. With TPC2 emerging as a novel drug target for the treatment of various diseases, this study provides valuable insights into ethnic and geographical distribution of TPC2 polymorphisms and their effects on channel activity.


Asunto(s)
Canales de Calcio/genética , Estudio de Asociación del Genoma Completo , Color del Cabello/genética , Animales , Fibroblastos/metabolismo , Mutación con Ganancia de Función/genética , Genoma Humano/genética , Humanos , Lisosomas/genética , Ratones , Ratones Noqueados , NADP/genética , Pigmentación/genética , Polimorfismo de Nucleótido Simple/genética , Transducción de Señal/genética
10.
EMBO J ; 38(2)2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30498130

RESUMEN

Intestinal handling of dietary proteins usually prevents local inflammatory and immune responses and promotes oral tolerance. However, in ~ 1% of the world population, gluten proteins from wheat and related cereals trigger an HLA DQ2/8-restricted TH1 immune and antibody response leading to celiac disease. Prior epithelial stress and innate immune activation are essential for breaking oral tolerance to the gluten component gliadin. How gliadin subverts host intestinal mucosal defenses remains elusive. Here, we show that the α-gliadin-derived LGQQQPFPPQQPY peptide (P31-43) inhibits the function of cystic fibrosis transmembrane conductance regulator (CFTR), an anion channel pivotal for epithelial adaptation to cell-autonomous or environmental stress. P31-43 binds to, and reduces ATPase activity of, the nucleotide-binding domain-1 (NBD1) of CFTR, thus impairing CFTR function. This generates epithelial stress, tissue transglutaminase and inflammasome activation, NF-κB nuclear translocation and IL-15 production, that all can be prevented by potentiators of CFTR channel gating. The CFTR potentiator VX-770 attenuates gliadin-induced inflammation and promotes a tolerogenic response in gluten-sensitive mice and cells from celiac patients. Our results unveil a primordial role for CFTR as a central hub orchestrating gliadin activities and identify a novel therapeutic option for celiac disease.


Asunto(s)
Enfermedad Celíaca/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Gliadina/farmacología , Fragmentos de Péptidos/farmacología , Adolescente , Aminofenoles/administración & dosificación , Aminofenoles/farmacología , Animales , Células CACO-2 , Enfermedad Celíaca/tratamiento farmacológico , Enfermedad Celíaca/genética , Línea Celular , Niño , Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Modelos Animales de Enfermedad , Regulación hacia Abajo , Femenino , Humanos , Masculino , Ratones , Unión Proteica/efectos de los fármacos , Conformación Proteica , Dominios Proteicos , Quinolonas/administración & dosificación , Quinolonas/farmacología , Adulto Joven
11.
J Cell Sci ; 134(6)2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33602742

RESUMEN

Lysosomes are acidic Ca2+ stores often mobilised in conjunction with endoplasmic reticulum (ER) Ca2+ stores. Glycyl-L-phenylalanine 2-naphthylamide (GPN) is a widely used lysosomotropic agent that evokes cytosolic Ca2+ signals in many cells. However, whether these signals are the result of a primary action on lysosomes is unclear in light of recent evidence showing that GPN mediates direct ER Ca2+ release through changes in cytosolic pH. Here, we show that GPN evoked rapid increases in cytosolic pH but slower Ca2+ signals. NH4Cl evoked comparable changes in pH but failed to affect Ca2+ The V-type ATPase inhibitor, bafilomycin A1, increased lysosomal pH over a period of hours. Acute treatment modestly affected lysosomal pH and potentiated Ca2+ signals evoked by GPN. In contrast, chronic treatment led to more profound changes in luminal pH and selectively inhibited GPN action. GPN blocked Ca2+ responses evoked by the novel nicotinic acid adenine dinucleotide phosphate-like agonist, TPC2-A1-N. Therefore, GPN-evoked Ca2+ signals were better correlated with associated pH changes in the lysosome compared to the cytosol, and were coupled to lysosomal Ca2+ release. We conclude that Ca2+ signals evoked by GPN most likely derive from acidic organelles.


Asunto(s)
Calcio , Dipéptidos , Calcio/metabolismo , Señalización del Calcio , Retículo Endoplásmico/metabolismo , Lisosomas/metabolismo , NADP/metabolismo
12.
J Cell Sci ; 134(19)2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34494099

RESUMEN

Ptychographic hard X-ray computed tomography (PXCT) is a recent method allowing imaging with quantitative electron-density contrast. Here, we imaged, at cryogenic temperature and without sectioning, cellular and subcellular structures of a chemically fixed and stained wild-type mouse retina, including axons and synapses, with complete isotropic 3D information over tens of microns. Comparison with tomograms of degenerative retina from a mouse model of retinitis pigmentosa illustrates the potential of this method for analyzing disease processes like neurodegeneration at sub-200 nm resolution. As a non-destructive imaging method, PXCT is very suitable for correlative imaging. Within the outer plexiform layer containing the photoreceptor synapses, we identified somatic synapses. We used a small region inside the X-ray-imaged sample for further high-resolution focused ion beam/scanning electron microscope tomography. The subcellular structures of synapses obtained with the X-ray technique matched the electron microscopy data, demonstrating that PXCT is a powerful scanning method for tissue volumes of more than 60 cells and sensitive enough for identification of regions as small as 200 nm, which remain available for further structural and biochemical investigations.


Asunto(s)
Retina , Tomografía , Animales , Imagenología Tridimensional , Ratones , Microscopía Electrónica , Sinapsis , Tomografía Computarizada por Rayos X
13.
Cell Mol Life Sci ; 79(8): 409, 2022 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-35810394

RESUMEN

Inherited retinal diseases (IRDs) are a heterogeneous group of blinding disorders, which result in dysfunction or death of the light-sensing cone and rod photoreceptors. Despite individual IRDs (Inherited retinal disease) being rare, collectively, they affect up to 1:2000 people worldwide, causing a significant socioeconomic burden, especially when cone-mediated central vision is affected. This study uses the Pde6ccpfl1 mouse model of achromatopsia, a cone-specific vision loss IRD (Inherited retinal disease), to investigate the potential gene-independent therapeutic benefits of a histone demethylase inhibitor GSK-J4 on cone cell survival. We investigated the effects of GSK-J4 treatment on cone cell survival in vivo and ex vivo and changes in cone-specific gene expression via single-cell RNA sequencing. A single intravitreal GSK-J4 injection led to transcriptional changes in pathways involved in mitochondrial dysfunction, endoplasmic reticulum stress, among other key epigenetic pathways, highlighting the complex interplay between methylation and acetylation in healthy and diseased cones. Furthermore, continuous administration of GSK-J4 in retinal explants increased cone survival. Our results suggest that IRD (Inherited retinal disease)-affected cones respond positively to epigenetic modulation of histones, indicating the potential of this approach in developing a broad class of novel therapies to slow cone degeneration.


Asunto(s)
Defectos de la Visión Cromática , Distrofia del Cono , Animales , Defectos de la Visión Cromática/metabolismo , Distrofia del Cono/metabolismo , Modelos Animales de Enfermedad , Histonas/metabolismo , Humanos , Ratones , Células Fotorreceptoras Retinianas Conos/metabolismo
14.
Handb Exp Pharmacol ; 278: 249-276, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35902436

RESUMEN

Functional characterization of endolysosomal ion channels is challenging due to their intracellular location. With recent advances in endolysosomal patch clamp technology, it has become possible to directly measure ion channel currents across endolysosomal membranes. Members of the transient receptor potential (TRP) cation channel family, namely the endolysosomal TRPML channels (TRPML1-3), also called mucolipins, as well as the distantly related two-pore channels (TPCs) have recently been characterized in more detail with endolysosomal patch clamp techniques. However, answers to many physiological questions require work in intact cells or animal models. One major obstacle thereby is that the known endogenous ligands of TRPMLs and TPCs are anionic in nature and thus impermeable for cell membranes. Microinjection, on the other hand, is technically demanding. There is also a risk of losing essential co-factors for channel activation or inhibition in isolated preparations. Therefore, lipophilic, membrane-permeable small-molecule activators and inhibitors for TRPMLs and TPCs are urgently needed. Here, we describe and discuss the currently available small-molecule modulators of TRPMLs and TPCs.


Asunto(s)
Canales de Potencial de Receptor Transitorio , Animales , Lisosomas/metabolismo , Membrana Celular/metabolismo , Endosomas/metabolismo , Cationes/metabolismo
15.
Adv Exp Med Biol ; 1415: 55-59, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37440014

RESUMEN

Many age-related diseases, including age-related macular degeneration (AMD), go along with local lipid accumulation and dysregulated lipid metabolism. Several genes involved in lipid metabolism, including ATP-binding cassette transporter A1 (ABCA1), were associated with AMD through genome-wide association studies. Recent studies have shown that loss of ABCA1 in the retinal pigment epithelium (RPE) leads to lipid accumulation and RPE atrophy, a hallmark of AMD, and that antagonizing ABCA1-targeting microRNAs (miRNAs) attenuated pathological changes to the RPE or to macrophages. Here, we focus on two lipid metabolism-modulating miRNAs, miR-33 and miR-34a, which show increased expression in aging RPE cells, and on their potential to regulate ABCA1 levels, cholesterol efflux, and lipid accumulation in AMD pathogenesis.


Asunto(s)
Degeneración Macular , MicroARNs , Humanos , Colesterol/metabolismo , Estudio de Asociación del Genoma Completo , MicroARNs/genética , MicroARNs/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Degeneración Macular/genética , Degeneración Macular/metabolismo , Envejecimiento/genética , Transportador 1 de Casete de Unión a ATP/genética , Transportador 1 de Casete de Unión a ATP/metabolismo
16.
Adv Exp Med Biol ; 1415: 377-381, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37440060

RESUMEN

Müller glia are the principal macroglia of the retina and support retinal neurons both in health and disease. In retinitis pigmentosa (RP), a highly heterogeneous inherited retinal disorder, the most common form of pathology involves primary rod degeneration, followed by secondary cone death. To investigate Müller glia responses to rod degeneration, we performed droplet-based single-cell RNA sequencing in the rd10 mouse model of RP during primary rod degeneration. We confirmed known MG behavior on gliosis, metabolic, and immune functions. Pde6brd10 Müller glia also exhibited an increased expression of histocompatibility complex members, which might arise from a novel immune function of Müller glia in RP. We also describe a possible decrease in glial lipid biogenesis, which might affect degenerating photoreceptors.


Asunto(s)
Retinitis Pigmentosa , Transcriptoma , Ratones , Animales , Retina/patología , Retinitis Pigmentosa/patología , Células Fotorreceptoras Retinianas Conos/patología , Neuroglía/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
17.
Adv Exp Med Biol ; 1415: 131-134, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37440025

RESUMEN

Throughout the last 25 years, exceptional progress in retinal gene therapy was achieved. The major breakthrough was realized in 2017 when the FDA approved the adeno-associated virus (AAV)-based gene therapy for treatment of the monogenetic disorder Leber congenital amaurosis type 2 (LCA2). Since then, many therapies for inherited retinal diseases (IRD) reached phase I/II clinical trials, targeting diseases like achromatopsia, choroideremia, retinitis pigmentosa, Stargardt disease, and many more (reviewed in (Trapani and Auricchio, Trends Mol Med 24:669-681, 2018)). Advanced vector and capsid design technologies as well as improved gene transfer and gene editing methods may lead to refined therapies for various eye diseases. Many research departments worldwide focus on optimizing transgene expression by designing novel AAV serotypes. Besides serotype tropism, the method of injection (intravitreal, subretinal, or suprachoroidal) (Han et al., Hum Gene Ther 31:1288-1299, 2020) defines the efficiency outcome along with the use of tissue-specific promotors which play a critical role for cell targeting.


Asunto(s)
Dependovirus , Retina , Serogrupo , Dependovirus/genética , Transducción Genética , Retina/metabolismo , Terapia Genética , Vectores Genéticos/genética
18.
Proc Natl Acad Sci U S A ; 117(30): 18068-18078, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32661165

RESUMEN

Mast cells and basophils are main drivers of allergic reactions and anaphylaxis, for which prevalence is rapidly increasing. Activation of these cells leads to a tightly controlled release of inflammatory mediators stored in secretory granules. The release of these granules is dependent on intracellular calcium (Ca2+) signals. Ca2+ release from endolysosomal compartments is mediated via intracellular cation channels, such as two-pore channel (TPC) proteins. Here, we uncover a mechanism for how TPC1 regulates Ca2+ homeostasis and exocytosis in mast cells in vivo and ex vivo. Notably, in vivo TPC1 deficiency in mice leads to enhanced passive systemic anaphylaxis, reflected by increased drop in body temperature, most likely due to accelerated histamine-induced vasodilation. Ex vivo, mast cell-mediated histamine release and degranulation was augmented upon TPC1 inhibition, although mast cell numbers and size were diminished. Our results indicate an essential role of TPC1 in endolysosomal Ca2+ uptake and filling of endoplasmic reticulum Ca2+ stores, thereby regulating exocytosis in mast cells. Thus, pharmacological modulation of TPC1 might blaze a trail to develop new drugs against mast cell-related diseases, including allergic hypersensitivity.


Asunto(s)
Anafilaxia/etiología , Anafilaxia/metabolismo , Canales de Calcio/deficiencia , Susceptibilidad a Enfermedades , Mastocitos/inmunología , Mastocitos/metabolismo , Biomarcadores , Señalización del Calcio , Degranulación de la Célula , Citocinas/metabolismo , Predisposición Genética a la Enfermedad , Histamina/metabolismo , Inmunoglobulina E/inmunología , Mediadores de Inflamación/metabolismo
19.
BMC Biol ; 20(1): 86, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35413909

RESUMEN

BACKGROUND: In inherited retinal disorders such as retinitis pigmentosa (RP), rod photoreceptor-specific mutations cause primary rod degeneration that is followed by secondary cone death and loss of high-acuity vision. Mechanistic studies of retinal degeneration are challenging because of retinal heterogeneity. Moreover, the detection of early cone responses to rod death is especially difficult due to the paucity of cones in the retina. To resolve heterogeneity in the degenerating retina and investigate events in both types of photoreceptors during primary rod degeneration, we utilized droplet-based single-cell RNA sequencing in an RP mouse model, rd10. RESULTS: Using trajectory analysis, we defined two consecutive phases of rod degeneration at P21, characterized by the early transient upregulation of Egr1 and the later induction of Cebpd. EGR1 was the transcription factor most significantly associated with the promoters of differentially regulated genes in Egr1-positive rods in silico. Silencing Egr1 affected the expression levels of two of these genes in vitro. Degenerating rods exhibited changes associated with metabolism, neuroprotection, and modifications to synapses and microtubules. Egr1 was also the most strongly upregulated transcript in cones. Its upregulation in cones accompanied potential early respiratory dysfunction and changes in signaling pathways. The expression pattern of EGR1 in the retina was dynamic during degeneration, with a transient increase of EGR1 immunoreactivity in both rods and cones during the early stages of their degenerative processes. CONCLUSION: Our results identify early and late changes in degenerating rd10 rod photoreceptors and reveal early responses to rod degeneration in cones not expressing the disease-causing mutation, pointing to mechanisms relevant for secondary cone degeneration. In addition, our data implicate EGR1 as a potential key regulator of early degenerative events in rods and cones, providing a potential broad target for modulating photoreceptor degeneration.


Asunto(s)
Células Fotorreceptoras Retinianas Bastones , Retinitis Pigmentosa , Animales , Modelos Animales de Enfermedad , Ratones , Retina/metabolismo , Células Fotorreceptoras Retinianas Conos/fisiología , Células Fotorreceptoras Retinianas Bastones/metabolismo , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/metabolismo , Análisis de Secuencia de ARN
20.
Int J Mol Sci ; 23(6)2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35328615

RESUMEN

Age-related macular degeneration (AMD) is a progressive disease of the macula characterized by atrophy of the retinal pigment epithelium (RPE) and photoreceptor degeneration, leading to severe vision loss at advanced stages in the elderly population. Impaired reverse cholesterol transport (RCT) as well as intracellular lipid accumulation in the RPE are implicated in AMD pathogenesis. Here, we focus on ATP-binding cassette transporter A1 (ABCA1), a major cholesterol transport protein in the RPE, and analyze conditions that lead to ABCA1 dysregulation in induced pluripotent stem cell (iPSC)-derived RPE cells (iRPEs). Our results indicate that the risk-conferring alleles rs1883025 (C) and rs2740488 (A) in ABCA1 are associated with increased ABCA1 mRNA and protein levels and reduced efficiency of cholesterol efflux from the RPE. Hypoxia, an environmental risk factor for AMD, reduced expression of ABCA1 and increased intracellular lipid accumulation. Treatment with a liver X receptor (LXR) agonist led to an increase in ABCA1 expression and reduced lipid accumulation. Our data strengthen the homeostatic role of cholesterol efflux in the RPE and suggest that increasing cellular cholesterol export by stimulating ABCA1 expression might lessen lipid load, improving RPE survival and reducing the risk of developing AMD.


Asunto(s)
Células Madre Pluripotentes Inducidas , Degeneración Macular , Transportador 1 de Casete de Unión a ATP/genética , Transportador 1 de Casete de Unión a ATP/metabolismo , Anciano , Colesterol/metabolismo , Humanos , Hipoxia/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Degeneración Macular/metabolismo , Epitelio Pigmentado de la Retina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA