Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
PLoS Pathog ; 17(3): e1009471, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33780515

RESUMEN

Platelet-derived growth factor receptor alpha (PDGFRα) serves as an entry receptor for the human cytomegalovirus (HCMV), and soluble PDGFRα-Fc can neutralize HCMV at a half-maximal effective concentration (EC50) of about 10 ng/ml. While this indicates a potential for usage as an HCMV entry inhibitor PDGFRα-Fc can also bind the physiological ligands of PDGFRα (PDGFs), which likely interferes with the respective signaling pathways and represents a potential source of side effects. Therefore, we tested the hypothesis that interference with PDGF signaling can be prevented by mutations in PDGFRα-Fc or combinations thereof, without losing the inhibitory potential for HCMV. To this aim, a targeted mutagenesis approach was chosen. The mutations were quantitatively tested in biological assays for interference with PDGF-dependent signaling as well as inhibition of HCMV infection and biochemically for reduced affinity to PDGF-BB, facilitating quantification of PDGFRα-Fc selectivity for HCMV inhibition. Mutation of Ile 139 to Glu and Tyr 206 to Ser strongly reduced the affinity for PDGF-BB and hence interference with PDGF-dependent signaling. Inhibition of HCMV infection was less affected, thus increasing the selectivity by factor 4 and 8, respectively. Surprisingly, the combination of these mutations had an additive effect on binding of PDGF-BB but not on inhibition of HCMV, resulting in a synergistic 260fold increase of selectivity. In addition, a recently reported mutation, Val 242 to Lys, was included in the analysis. PDGFRα-Fc with this mutation was fully effective at blocking HCMV entry and had a drastically reduced affinity for PDGF-BB. Combining Val 242 to Lys with Ile 139 to Glu and/or Tyr 206 to Ser further reduced PDGF ligand binding beyond detection. In conclusion, this targeted mutagenesis approach identified combinations of mutations in PDGFRα-Fc that prevent interference with PDGF-BB but maintain inhibition of HCMV, which qualifies such mutants as candidates for the development of HCMV entry inhibitors.


Asunto(s)
Infecciones por Citomegalovirus , Fragmentos Fc de Inmunoglobulinas , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas , Becaplermina/efectos de los fármacos , Becaplermina/metabolismo , Citomegalovirus , Fibroblastos , Células HEK293 , Humanos , Fragmentos Fc de Inmunoglobulinas/química , Fragmentos Fc de Inmunoglobulinas/farmacología , Mutagénesis Sitio-Dirigida , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/química , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/farmacología
2.
J Biol Chem ; 293(40): 15458-15470, 2018 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-30097517

RESUMEN

The receptor cycle of type I peroxisomal matrix protein import is completed by ubiquitination of the membrane-bound peroxisome biogenesis factor 5 (Pex5p) and its subsequent export back to the cytosol. The receptor export is the only ATP-dependent step of the whole process and is facilitated by two members of the AAA family of proteins (ATPases associated with various cellular activities), namely Pex1p and Pex6p. To gain further insight into substrate recognition by the AAA complex, we generated an N-terminally linked ubiquitin-Pex5p fusion protein. This fusion protein displayed biological activity because it is able to functionally complement a PEX5-deletion in Saccharomyces cerevisiae. In vitro assays revealed its interaction at WT level with the native cargo protein Pcs60p and Pex14p, a constituent of the receptor docking complex. We also demonstrate in vitro deubiquitination by the deubiquitinating enzyme Ubp15p. In vitro pulldown assays and cross-linking studies demonstrate that Pex5p recognition by the AAA complex depends on the presence of the ubiquitin moiety and is mediated by Pex1p.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/genética , Regulación Fúngica de la Expresión Génica , Proteínas de la Membrana/genética , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/genética , Peroxisomas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Ubiquitina/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Citosol/metabolismo , Endopeptidasas/genética , Endopeptidasas/metabolismo , Prueba de Complementación Genética , Ligasas/genética , Ligasas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Peroxinas/genética , Peroxinas/metabolismo , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/metabolismo , Fosforilación , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Ubiquitina/metabolismo , Ubiquitinación
3.
Biochim Biophys Acta ; 1863(5): 828-37, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26453804

RESUMEN

Mutations in the PEX1 gene, which encodes a protein required for peroxisome biogenesis, are the most common cause of the Zellweger spectrum diseases. The recognition that Pex1p shares a conserved ATP-binding domain with p97 and NSF led to the discovery of the extended family of AAA+-type ATPases. So far, four AAA+-type ATPases are related to peroxisome function. Pex6p functions together with Pex1p in peroxisome biogenesis, ATAD1/Msp1p plays a role in membrane protein targeting and a member of the Lon-family of proteases is associated with peroxisomal quality control. This review summarizes the current knowledge on the AAA+-proteins involved in peroxisome biogenesis and function.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de la Membrana/metabolismo , Biogénesis de Organelos , Peroxisomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Animales , Células Eucariotas/química , Células Eucariotas/metabolismo , Regulación de la Expresión Génica , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Peroxisomas/química , Plantas/química , Plantas/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal
4.
Biol Chem ; 398(5-6): 607-624, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-27977397

RESUMEN

In peroxisomal matrix protein import two processes directly depend on the binding and hydrolysis of ATP, both taking place at the late steps of the peroxisomal import cycle. First, ATP hydrolysis is required to initiate a ubiquitin-transfer cascade to modify the import (co-)receptors. These receptors display a dual localization in the cytosol and at the peroxisomal membrane, whereas only the membrane bound fraction receives the ubiquitin modification. The second ATP-dependent process of the import cycle is carried out by the two AAA+-proteins Pex1p and Pex6p. These ATPases form a heterohexameric complex, which is recruited to the peroxisomal import machinery by the membrane anchor protein Pex15p. The Pex1p/Pex6p complex recognizes the ubiquitinated import receptors, pulls them out of the membrane and releases them into the cytosol. There the deubiquitinated receptors are provided for further rounds of import. ATP binding and hydrolysis are required for Pex1p/Pex6p complex formation and receptor export. In this review, we summarize the current knowledge on the peroxisomal import cascade. In particular, we will focus on the ATP-dependent processes, which are so far best understood in the model organism Saccharomyces cerevisiae.


Asunto(s)
Adenosina Trifosfato/metabolismo , Peroxisomas/metabolismo , Transporte de Proteínas , Animales , Humanos , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitinación
5.
Biochim Biophys Acta ; 1823(1): 150-8, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21963882

RESUMEN

The recognition of the conserved ATP-binding domains of Pex1p, p97 and NSF led to the discovery of the family of AAA-type ATPases. The biogenesis of peroxisomes critically depends on the function of two AAA-type ATPases, namely Pex1p and Pex6p, which provide the energy for import of peroxisomal matrix proteins. Peroxisomal matrix proteins are synthesized on free ribosomes in the cytosol and guided to the peroxisomal membrane by specific soluble receptors. At the membrane, the cargo-loaded receptors bind to a docking complex and the receptor-docking complex assembly is thought to form a dynamic pore which enables the transition of the cargo into the organellar lumen. The import cycle is completed by ubiquitination- and ATP-dependent dislocation of the receptor from the membrane to the cytosol, which is performed by the AAA-peroxins. Receptor ubiquitination and dislocation are the only energy-dependent steps in peroxisomal protein import. The export-driven import model suggests that the AAA-peroxins might function as motor proteins in peroxisomal import by coupling ATP-dependent removal of the peroxisomal import receptor and cargo translocation into the organelle.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de la Membrana/metabolismo , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfatasas/química , Proteínas de Ciclo Celular/metabolismo , Degradación Asociada con el Retículo Endoplásmico , Proteínas de la Membrana/química , Peroxisomas/enzimología , Peroxisomas/metabolismo , Multimerización de Proteína , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteína que Contiene Valosina
6.
J Struct Biol ; 179(2): 126-32, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22710083

RESUMEN

The peroxisomal matrix protein import is facilitated by soluble receptor molecules which cycle between cytosol and the peroxisomal membrane. At the end of the receptor cycle, the import receptors are exported back to the cytosol in an ATP-dependent manner catalyzed by Pex1p and Pex6p, two AAA (ATPases associated with various cellular activities) type ATPases. Pex1p and Pex6p interact and form a heteromeric complex. In order to gain more insight into the stoichiometry and mechanism of assembly of the complex, we heterologously expressed and purified Saccharomyces cerevisiae Pex1p and Pex6p. Size exclusion chromatography studies of the recombinant proteins demonstrate that they form a hexameric complex in a one-to-one ratio of both AAA-proteins. The recombinant AAA-complex exhibits an ATPase activity with a k(m) of 0.17 mM and V(max) of 0.35 nmol min(-1) µg(-1). In the presence of N-ethylmaleimide, ATPase activity of the peroxisomal AAA-complex is drastically decreased and the complex dissociates. Disassembly of the complex into its Pex1p and Pex6p subunits is also observed upon ATP-depletion, indicating that formation of the Pex1p/Pex6p-complex requires the presence of ATP.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas de la Membrana/metabolismo , Peroxisomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Unión Proteica/genética , Unión Proteica/fisiología , Transporte de Proteínas/genética , Transporte de Proteínas/fisiología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
8.
Biomolecules ; 11(7)2021 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-34356681

RESUMEN

Novel antimicrobial strategies are urgently required because of the rising threat of multi drug resistant bacterial strains and the infections caused by them. Among the available target structures, the so-called penicillin binding proteins are of particular interest, owing to their good accessibility in the periplasmic space, and the lack of homologous proteins in humans, reducing the risk of side effects of potential drugs. In this report, we focus on the interaction of the innovative ß-lactam antibiotic AIC499 with penicillin binding protein 3 (PBP3) from Escherichia coli and Pseudomonas aeruginosa. This recently developed monobactam displays broad antimicrobial activity, against Gram-negative strains, and improved resistance to most classes of ß-lactamases. By analyzing crystal structures of the respective complexes, we were able to explore the binding mode of AIC499 to its target proteins. In addition, the apo structures determined for PBP3, from P. aeruginosa and the catalytic transpeptidase domain of the E. coli orthologue, provide new insights into the dynamics of these proteins and the impact of drug binding.


Asunto(s)
Monobactamas/metabolismo , Proteínas de Unión a las Penicilinas/química , Proteínas de Unión a las Penicilinas/metabolismo , Cristalografía por Rayos X , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Monobactamas/química , Proteínas de Unión a las Penicilinas/genética , Conformación Proteica , Pseudomonas aeruginosa
9.
Antibiotics (Basel) ; 10(5)2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-34064358

RESUMEN

The alarming threat of the spread of multidrug resistant bacteria currently leaves clinicians with very limited options to combat infections, especially those from Gram-negative bacteria. Hence, innovative strategies to deliver the next generation of antibacterials are urgently needed. Penicillin binding proteins (PBPs) are proven targets inhibited by ß-lactam antibiotics. To discover novel, non-ß-lactam inhibitors against PBP3 of Pseudomonas aeruginosa, we optimised a fluorescence assay based on a well-known thioester artificial substrate and performed a target screening using a focused protease-targeted library of 2455 compounds, which led to the identification of pyrrolidine-2,3-dione as a potential scaffold to inhibit the PBP3 target. Further chemical optimisation using a one-pot three-component reaction protocol delivered compounds with excellent target inhibition, initial antibacterial activities against P. aeruginosa and no apparent cytotoxicity. Our investigation revealed the key structural features; for instance, 3-hydroxyl group (R2) and a heteroaryl group (R1) appended to the N-pyrroldine-2,3-dione via methylene linker required for target inhibition. Overall, the discovery of the pyrrolidine-2,3-dione class of inhibitors of PBP3 brings opportunities to target multidrug-resistant bacterial strains and calls for further optimisation to improve antibacterial activity against P. aeruginosa.

10.
Sci Rep ; 6: 19838, 2016 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-26842748

RESUMEN

Pex1p and Pex6p are two AAA-ATPases required for biogenesis of peroxisomes. Both proteins form a hetero-hexameric complex in an ATP-dependent manner, which has a dual localization in the cytosol and at the peroxisomal membrane. At the peroxisomal membrane, the complex is responsible for the release of the import receptor Pex5p at the end of the matrix protein import cycle. In this study, we analyzed the recruitment of the AAA-complex to its anchor protein Pex15p at the peroxisomal membrane. We show that the AAA-complex is properly assembled even under ADP-conditions and is able to bind efficiently to Pex15p in vivo. We reconstituted binding of the Pex1/6p-complex to Pex15p in vitro and show that Pex6p mediates binding to the cytosolic part of Pex15p via a direct interaction. Analysis of the isolated complex revealed a stoichiometry of Pex1p/Pex6p/Pex15p of 3:3:3, indicating that each Pex6p molecule of the AAA-complex binds Pex15p. Binding of the AAA-complex to Pex15p in particular and to the import machinery in general is stabilized when ATP is bound to the second AAA-domain of Pex6p and its hydrolysis is prevented. The data indicate that receptor release in peroxisomal protein import is associated with a nucleotide-depending Pex1/6p-cycle of Pex15p-binding and release.


Asunto(s)
Proteínas de la Membrana/metabolismo , Nucleótidos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Difosfato/química , Adenosina Difosfato/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Cromatografía en Gel , Electroforesis en Gel de Poliacrilamida , Escherichia coli/metabolismo , Proteínas de la Membrana/genética , Modelos Moleculares , Nucleótidos/química , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Unión Proteica , Multimerización de Proteína , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/aislamiento & purificación , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
11.
Nat Commun ; 6: 7331, 2015 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-26066397

RESUMEN

The peroxisomal proteins Pex1 and Pex6 form a heterohexameric type II AAA+ ATPase complex, which fuels essential protein transport across peroxisomal membranes. Mutations in either ATPase in humans can lead to severe peroxisomal disorders and early death. We present an extensive structural and biochemical analysis of the yeast Pex1/6 complex. The heterohexamer forms a trimer of Pex1/6 dimers with a triangular geometry that is atypical for AAA+ complexes. While the C-terminal nucleotide-binding domains (D2) of Pex6 constitute the main ATPase activity of the complex, both D2 harbour essential substrate-binding motifs. ATP hydrolysis results in a pumping motion of the complex, suggesting that Pex1/6 function involves substrate translocation through its central channel. Mutation of the Walker B motif in one D2 domain leads to ATP hydrolysis in the neighbouring domain, giving structural insights into inter-domain communication of these unique heterohexameric AAA+ assemblies.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfato/metabolismo , Dimerización , Hidrólisis , Unión Proteica , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA