Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Pharmacol Rev ; 75(6): 1233-1318, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37586884

RESUMEN

The NR superfamily comprises 48 transcription factors in humans that control a plethora of gene network programs involved in a wide range of physiologic processes. This review will summarize and discuss recent progress in NR biology and drug development derived from integrating various approaches, including biophysical techniques, structural studies, and translational investigation. We also highlight how defective NR signaling results in various diseases and disorders and how NRs can be targeted for therapeutic intervention via modulation via binding to synthetic lipophilic ligands. Furthermore, we also review recent studies that improved our understanding of NR structure and signaling. SIGNIFICANCE STATEMENT: Nuclear receptors (NRs) are ligand-regulated transcription factors that are critical regulators of myriad physiological processes. NRs serve as receptors for an array of drugs, and in this review, we provide an update on recent research into the roles of these drug targets.


Asunto(s)
Farmacología Clínica , Humanos , Receptores Citoplasmáticos y Nucleares/metabolismo , Factores de Transcripción/metabolismo , Proteínas Portadoras , Ligandos
2.
J Hepatol ; 80(2): 282-292, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37890720

RESUMEN

BACKGROUND & AIMS: Chronic circadian dysfunction increases the risk of non-alcoholic fatty liver disease (NAFLD)-related hepatocellular carcinoma (HCC), but the underlying mechanisms and direct relevance to human HCC have not been established. In this study, we aimed to determine whether chronic circadian dysregulation can drive NAFLD-related carcinogenesis from human hepatocytes and human HCC progression. METHODS: Chronic jet lag of mice with humanized livers induces spontaneous NAFLD-related HCCs from human hepatocytes. The clinical relevance of this model was analysed by biomarker, pathological/histological, genetic, RNA sequencing, metabolomic, and integrated bioinformatic analyses. RESULTS: Circadian dysfunction induces glucose intolerance, NAFLD-associated human HCCs, and human HCC metastasis independent of diet in a humanized mouse model. The deregulated transcriptomes in necrotic-inflammatory humanized livers and HCCs bear a striking resemblance to those of human non-alcoholic steatohepatitis (NASH), cirrhosis, and HCC. Stable circadian entrainment of hosts rhythmically paces NASH and HCC transcriptomes to decrease HCC incidence and prevent HCC metastasis. Circadian disruption directly reprogrammes NASH and HCC transcriptomes to drive a rapid progression from hepatocarcinogenesis to HCC metastasis. Human hepatocyte and tumour transcripts are clearly distinguishable from mouse transcripts in non-parenchymal cells and tumour stroma, and display dynamic changes in metabolism, inflammation, angiogenesis, and oncogenic signalling in NASH, progressing to hepatocyte malignant transformation and immunosuppressive tumour stroma in HCCs. Metabolomic analysis defines specific bile acids as prognostic biomarkers that change dynamically during hepatocarcinogenesis and in response to circadian disruption at all disease stages. CONCLUSION: Chronic circadian dysfunction is independently carcinogenic to human hepatocytes. Mice with humanized livers provide a powerful preclinical model for studying the impact of the necrotic-inflammatory liver environment and neuroendocrine circadian dysfunction on hepatocarcinogenesis and anti-HCC therapy. IMPACT AND IMPLICATIONS: Human epidemiological studies have linked chronic circadian dysfunction to increased hepatocellular carcinoma (HCC) risk, but direct evidence that circadian dysfunction is a human carcinogen has not been established. Here we show that circadian dysfunction induces non-alcoholic steatohepatitis (NASH)-related carcinogenesis from human hepatocytes in a murine humanized liver model, following the same molecular and pathologic pathways observed in human patients. The gene expression signatures of humanized HCC transcriptomes from circadian-disrupted mice closely match those of human HCC with the poorest prognostic outcomes, while those from stably circadian entrained mice match those from human HCC with the best prognostic outcomes. Our studies establish a new model for defining the mechanism of NASH-related HCC and highlight the importance of circadian biology in HCC prevention and treatment.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/genética , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Hígado/patología , Modelos Animales de Enfermedad , Carcinogénesis/metabolismo , Carcinógenos/metabolismo
3.
Am J Obstet Gynecol ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38825029

RESUMEN

BACKGROUND: Black women experience a disproportionate impact of uterine fibroids compared to White women, including earlier diagnosis, higher frequency, and more severe symptoms. The etiology underlying this racial disparity remains elusive. OBJECTIVE: The aim of this study was to evaluate the molecular differences in normal myometrium (fibroid-free uteri) and at-risk myometrium (fibroid-containing uteri) tissues in Black and White women. STUDY DESIGN: We conducted whole-genome RNA-seq on normal and at-risk myometrium tissues obtained from both self-identified Black and White women (not Hispanic or Latino) to determine global gene expression profiles and to conduct enriched pathway analyses (n=3 per group). We initially assessed the differences within the same type of tissue (normal or at-risk myometrium) between races. Subsequently, we analyzed the transcriptome of normal myometrium compared to at-risk myometrium in each race and determined the differences between them. We validated our findings through real-time PCR (sample size range=5-12), western blot (sample size range=5-6), and immunohistochemistry techniques (sample size range=9-16). RESULTS: The transcriptomic analysis revealed distinct profiles between Black and White women in normal and at-risk myometrium tissues. Interestingly, genes and pathways related to extracellular matrix and mechanosensing were more enriched in normal myometrium from Black than White women. Transcription factor enrichment analysis detected greater activity of the serum response transcription factor positional motif in normal myometrium from Black compared to White women. Furthermore, we observed increased expression levels of myocardin-related transcription factor-serum response factor and the serum response factor in the same comparison. In addition, we noted increased expression of both mRNA and protein levels of vinculin, a target gene of the serum response factor, in normal myometrium tissues from Black women as compared to White women. Importantly, the transcriptomic profile of normal to at-risk myometrium conversion differs between Black and White women. Specifically, we observed that extracellular matrix-related pathways are involved in the transition from normal to at-risk myometrium and that these processes are exacerbated in Black women. We found increased levels of Tenascin C, type I collagen alpha 1 chain, fibronectin, and phospho-p38 MAPK (Thr180/Tyr182, active) protein levels in at-risk over normal myometrium tissues from Black women, whereas such differences were not observed in samples from White women. CONCLUSION: These findings indicate that the racial disparities in uterine fibroids may be attributed to heightened production of extracellular matrix in the myometrium in Black women, even before the tumors appear. Future research is needed to understand early life determinants of the observed racial differences.

4.
Cell Mol Life Sci ; 80(10): 288, 2023 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-37689587

RESUMEN

Environmental exposure to endocrine-disrupting chemicals (EDCs) is linked to the development of uterine fibroids (UFs) in women. UFs, non-cancerous tumors, are thought to originate from abnormal myometrial stem cells (MMSCs). Defective DNA repair capacity may contribute to the emergence of mutations that promote tumor growth. The multifunctional cytokine TGFß1 is associated with UF progression and DNA damage repair pathways. To investigate the impact of EDC exposure on TGFß1 and nucleotide excision repair (NER) pathways, we isolated MMSCs from 5-month-old Eker rats exposed neonatally to diethylstilbestrol (DES), an EDC, or to vehicle (VEH). EDC-MMSCs exhibited overactivated TGFß1 signaling and reduced mRNA and protein levels of NER pathway components compared to VEH-MMSCs. EDC-MMSCs also demonstrated impaired NER capacity. Exposing VEH-MMSCs to TGFß1 decreased NER capacity while inhibiting TGFß signaling in EDC-MMSCs restored it. RNA-seq analysis and further validation revealed decreased expression of Uvrag, a tumor suppressor gene involved in DNA damage recognition, in VEH-MMSCs treated with TGFß1, but increased expression in EDC-MMSCs after TGFß signaling inhibition. Overall, we demonstrated that the overactivation of the TGFß pathway links early life exposure to EDCs with impaired NER capacity, which would lead to increased genetic instability, arise of mutations, and fibroid tumorigenesis. We demonstrated that the overactivation of the TGFß pathway links early life exposure to EDCs with impaired NER capacity, which would lead to increased fibroid incidence.


Asunto(s)
Disruptores Endocrinos , Leiomioma , Femenino , Animales , Ratas , Reparación del ADN/genética , Daño del ADN , Factor de Crecimiento Transformador beta/genética , Carcinogénesis , Disruptores Endocrinos/toxicidad , Leiomioma/inducido químicamente , Leiomioma/genética
5.
Eur Respir J ; 60(3)2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35169026

RESUMEN

BACKGROUND: In vitro, animal model and clinical evidence suggests that tuberculosis is not a monomorphic disease, and that host response to tuberculosis is protean with multiple distinct molecular pathways and pathologies (endotypes). We applied unbiased clustering to identify separate tuberculosis endotypes with classifiable gene expression patterns and clinical outcomes. METHODS: A cohort comprised of microarray gene expression data from microbiologically confirmed tuberculosis patients was used to identify putative endotypes. One microarray cohort with longitudinal clinical outcomes was reserved for validation, as were two RNA-sequencing (seq) cohorts. Finally, a separate cohort of tuberculosis patients with functional immune responses was evaluated to clarify stimulated from unstimulated immune responses. RESULTS: A discovery cohort, including 435 tuberculosis patients and 533 asymptomatic controls, identified two tuberculosis endotypes. Endotype A is characterised by increased expression of genes related to inflammation and immunity and decreased metabolism and proliferation; in contrast, endotype B has increased activity of metabolism and proliferation pathways. An independent RNA-seq validation cohort, including 118 tuberculosis patients and 179 controls, validated the discovery results. Gene expression signatures for treatment failure were elevated in endotype A in the discovery cohort, and a separate validation cohort confirmed that endotype A patients had slower time to culture conversion, and a reduced cure rate. These observations suggest that endotypes reflect functional immunity, supported by the observation that tuberculosis patients with a hyperinflammatory endotype have less responsive cytokine production upon stimulation. CONCLUSION: These findings provide evidence that metabolic and immune profiling could inform optimisation of endotype-specific host-directed therapies for tuberculosis.


Asunto(s)
Transcriptoma , Tuberculosis , Citocinas , Humanos , Inflamación , ARN , Tuberculosis/genética
6.
Pediatr Res ; 92(6): 1580-1589, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35338351

RESUMEN

BACKGROUND: Respiratory tract microbial dysbiosis can exacerbate inflammation and conversely inflammation may cause dysbiosis. Dysbiotic microbiome metabolites may lead to bronchopulmonary dysplasia (BPD). Hyperoxia and lipopolysaccharide (LPS) interaction alters lung microbiome and metabolome, mediating BPD lung injury sequence. METHODS: C57BL6/J mice were exposed to 21% (normoxia) or 70% (hyperoxia) oxygen during postnatal days (PND) 1-14. Pups were injected with LPS (6 mg/kg) or equal PBS volume, intraperitoneally on PND 3, 5, and 7. At PND14, the lungs were collected for microbiome and metabolomic analyses (n = 5/group). RESULTS: Microbiome alpha and beta diversity were similar between groups. Metabolic changes included hyperoxia 31 up/18 down, LPS 7 up/4 down, exposure interaction 8. Hyperoxia increased Intestinimonas abundance, whereas LPS decreased Clostridiales, Dorea, and Intestinimonas; exposure interaction affected Blautia. Differential co-expression analysis on multi-omics data identified exposure-altered modules. Hyperoxia metabolomics response was integrated with a published matching transcriptome, identifying four induced genes (ALDOA, GAA, NEU1, RENBP), which positively correlated with BPD severity in a published human newborn cohort. CONCLUSIONS: We report hyperoxia and LPS lung microbiome and metabolome signatures in a clinically relevant BPD model. We identified four genes correlating with BPD status in preterm infants that are promising targets for therapy and prevention. IMPACT: Using multi-omics, we identified and correlated key biomarkers of hyperoxia and LPS on murine lung micro-landscape and examined their potential clinical implication, which shows strong clinical relevance for future research. Using a double-hit model of clinical relevance to bronchopulmonary dysplasia, we are the first to report integrated metabolomic/microbiome landscape changes and identify novel disease biomarker candidates.


Asunto(s)
Displasia Broncopulmonar , Hiperoxia , Microbiota , Neumonía , Animales , Recién Nacido , Humanos , Ratones , Displasia Broncopulmonar/etiología , Hiperoxia/complicaciones , Hiperoxia/metabolismo , Animales Recién Nacidos , Disbiosis , Lipopolisacáridos/metabolismo , Multiómica , Recien Nacido Prematuro , Pulmón/metabolismo , Neumonía/metabolismo , Inflamación/metabolismo , Metaboloma , Modelos Animales de Enfermedad
7.
Brain ; 144(8): 2527-2540, 2021 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-34014281

RESUMEN

Gene discovery efforts in autism spectrum disorder have identified heterozygous defects in chromatin remodeller genes, the 'readers, writers and erasers' of methyl marks on chromatin, as major contributors to this disease. Despite this advance, a convergent aetiology between these defects and aberrant chromatin architecture or gene expression has remained elusive. Recently, data have begun to emerge that chromatin remodellers also function directly on the cytoskeleton. Strongly associated with autism spectrum disorder, the SETD2 histone methyltransferase for example, has now been shown to directly methylate microtubules of the mitotic spindle. However, whether microtubule methylation occurs in post-mitotic cells, for example on the neuronal cytoskeleton, is not known. We found the SETD2 α-tubulin lysine 40 trimethyl mark occurs on microtubules in the brain and in primary neurons in culture, and that the SETD2 C-terminal SRI domain is required for binding and methylation of α-tubulin. A CRISPR knock-in of a pathogenic SRI domain mutation (Setd2SRI) that disables microtubule methylation revealed at least one wild-type allele was required in mice for survival, and while viable, heterozygous Setd2SRI/wtmice exhibited an anxiety-like phenotype. Finally, whereas RNA-sequencing (RNA-seq) and chromatin immunoprecipitation-sequencing (ChIP-seq) showed no concomitant changes in chromatin methylation or gene expression in Setd2SRI/wtmice, primary neurons exhibited structural deficits in axon length and dendritic arborization. These data provide the first demonstration that microtubules of neurons are methylated, and reveals a heterozygous chromatin remodeller defect that specifically disables microtubule methylation is sufficient to drive an autism-associated phenotype.


Asunto(s)
Ansiedad/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Microtúbulos/metabolismo , Neuronas/metabolismo , Animales , Encéfalo/metabolismo , Histonas/metabolismo , Metilación , Ratones , Fenotipo
8.
Br J Cancer ; 124(1): 191-206, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33257837

RESUMEN

BACKGROUND: Oestrogen Receptor 1 (ESR1) mutations are frequently acquired in oestrogen receptor (ER)-positive metastatic breast cancer (MBC) patients who were treated with aromatase inhibitors (AI) in the metastatic setting. Acquired ESR1 mutations are associated with poor prognosis and there is a lack of effective therapies that selectively target these cancers. METHODS: We performed a proteomic kinome analysis in ESR1 Y537S mutant cells to identify hyperactivated kinases in ESR1 mutant cells. We validated Recepteur d'Origine Nantais (RON) and PI3K hyperactivity through phospho-immunoblot analysis, organoid growth assays, and in an in vivo patient-derived xenograft (PDX) metastatic model. RESULTS: We demonstrated that RON was hyperactivated in ESR1 mutant models, and in acquired palbociclib-resistant (PalbR) models. RON and insulin-like growth factor 1 receptor (IGF-1R) interacted as shown through pharmacological and genetic inhibition and were regulated by the mutant ER as demonstrated by reduced phospho-protein expression with endocrine therapies (ET). We show that ET in combination with a RON inhibitor (RONi) decreased ex vivo organoid growth of ESR1 mutant models, and as a monotherapy in PalbR models, demonstrating its therapeutic efficacy. Significantly, ET in combination with the RONi reduced metastasis of an ESR1 Y537S mutant PDX model. CONCLUSIONS: Our results demonstrate that RON/PI3K pathway inhibition may be an effective treatment strategy in ESR1 mutant and PalbR MBC patients. Clinically our data predict that ET resistance mechanisms can also contribute to CDK4/6 inhibitor resistance.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Resistencia a Antineoplásicos/fisiología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Animales , Neoplasias de la Mama/genética , Receptor alfa de Estrógeno/genética , Femenino , Humanos , Ratones , Mutación , Piperazinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Piridinas/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Biochem Biophys Res Commun ; 558: 202-208, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-33036756

RESUMEN

The process of autophagy is dysregulated in many cancers including clear cell renal cell carcinoma (ccRCC). Autophagy involves the coordination of numerous autophagy-related (ATG) genes, as well as processes involving the actin cytoskeleton. The histone methyltransferase SETD2, frequently inactivated in ccRCC, has recently been shown to also methylate cytoskeletal proteins, which in the case of actin lysine 68 trimethylation (ActK68me3) regulates actin polymerization dynamics. Here we show that cells lacking SETD2 exhibit autophagy defects, as well as decreased interaction of the actin nucleation promoting factor WHAMM with its target actin, which is required for initiation of autophagy. Interestingly, the WHAMM actin binding deficit could be rescued with pharmacologic induction of actin polymerization in SETD2-null cells using Jasplakinolide. These data indicate that the decreased interaction between WHAMM and its target actin in SETD2-null cells was secondary to altered actin dynamics rather than loss of the SETD2 ActK68me3 mark itself, and underscores the importance of the functional defect in actin polymerization in SETD2-null cells exhibiting autophagy defects.


Asunto(s)
Actinas/metabolismo , Carcinoma de Células Renales/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Neoplasias Renales/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Autofagia/genética , Autofagia/fisiología , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Línea Celular , Línea Celular Tumoral , Regulación hacia Abajo , Técnicas de Inactivación de Genes , N-Metiltransferasa de Histona-Lisina/deficiencia , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Neoplasias Renales/genética , Neoplasias Renales/patología
10.
BMC Biol ; 18(1): 103, 2020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-32814578

RESUMEN

BACKGROUND: The development of a safe, effective, reversible, non-hormonal contraceptive method for men has been an ongoing effort for the past few decades. However, despite significant progress on elucidating the function of key proteins involved in reproduction, understanding male reproductive physiology is limited by incomplete information on the genes expressed in reproductive tissues, and no contraceptive targets have so far reached clinical trials. To advance product development, further identification of novel reproductive tract-specific genes leading to potentially druggable protein targets is imperative. RESULTS: In this study, we expand on previous single tissue, single species studies by integrating analysis of publicly available human and mouse RNA-seq datasets whose initial published purpose was not focused on identifying male reproductive tract-specific targets. We also incorporate analysis of additional newly acquired human and mouse testis and epididymis samples to increase the number of targets identified. We detected a combined total of 1178 genes for which no previous evidence of male reproductive tract-specific expression was annotated, many of which are potentially druggable targets. Through RT-PCR, we confirmed the reproductive tract-specific expression of 51 novel orthologous human and mouse genes without a reported mouse model. Of these, we ablated four epididymis-specific genes (Spint3, Spint4, Spint5, and Ces5a) and two testis-specific genes (Pp2d1 and Saxo1) in individual or double knockout mice generated through the CRISPR/Cas9 system. Our results validate a functional requirement for Spint4/5 and Ces5a in male mouse fertility, while demonstrating that Spint3, Pp2d1, and Saxo1 are each individually dispensable for male mouse fertility. CONCLUSIONS: Our work provides a plethora of novel testis- and epididymis-specific genes and elucidates the functional requirement of several of these genes, which is essential towards understanding the etiology of male infertility and the development of male contraceptives.


Asunto(s)
Epidídimo/metabolismo , Expresión Génica , Testículo/metabolismo , Animales , Humanos , Masculino , Ratones , RNA-Seq , Reproducción
11.
J Cell Biochem ; 121(7): 3465-3478, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31907974

RESUMEN

Ductal carcinoma in situ (DCIS) is a nonobligate precursor to invasive breast cancer. Only a small percentage of DCIS cases are predicted to progress; however, there is no method to determine which DCIS lesions will remain innocuous from those that will become invasive disease. Therefore, DCIS is treated aggressively creating a current state of overdiagnosis and overtreatment. There is a critical need to identify functional determinants of progression of DCIS to invasive ductal carcinoma (IDC). Interrogating biopsies from five patients with contiguous DCIS and IDC lesions, we have shown that expression of the long noncoding RNA BHLHE40-AS1 increases with disease progression. BHLHE40-AS1 expression supports DCIS cell proliferation, motility, and invasive potential. Mechanistically, BHLHE40-AS1 modulates interleukin (IL)-6/signal transducer and activator of transcription 3 (STAT3) activity and a proinflammatory cytokine signature, in part through interaction with interleukin enhancer-binding factor 3. These data suggest that BHLHE40-AS1 supports early breast cancer progression by engaging STAT3 signaling, creating an immune-permissive microenvironment.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Neoplasias de la Mama/genética , Carcinoma Intraductal no Infiltrante/genética , Proteínas de Homeodominio/genética , Interleucina-6/genética , ARN sin Sentido/genética , ARN Largo no Codificante/genética , Factor de Transcripción STAT3/metabolismo , Neoplasias de la Mama/metabolismo , Carcinoma Intraductal no Infiltrante/metabolismo , Ciclo Celular , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Progresión de la Enfermedad , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Humanos , Invasividad Neoplásica , Transducción de Señal , Microambiente Tumoral
13.
Genesis ; 56(8): e23223, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30004627

RESUMEN

Using a Rosa26 gene targeting strategy in mouse embryonic stem cells, we have generated a new transgenic mouse (Pgr-B LSL ), which is designed to conditionally express the epitope-tagged mouse progesterone receptor-B (PGR-B) isoform when crossed with a specific cre driver mouse. To functionally validate this transgenic mouse, we crossed the Pgr-B LSL mouse with the MMTV-CREA transgenic mouse to create the MMTV-CREA/Pgr-B LSL bigenic (termed PR-B:OE to denote PGR-B overexpressor). As expected, transgene-derived PGR-B protein was specifically targeted to the virgin mammary gland epithelium. At a functional level, the PR-B:OE bigenic exhibited abnormal mammary morphogenesis-dilated epithelial ducts, precocious alveologenesis and lateral side-branching, along with a prominent proliferative signature-that resulted in pregnant PR-B:OE mice unable to exhibit mammary gland terminal differentiation at parturition. Because of this developmental failure, the PR-B:OE mammary gland was incapable of producing milk resulting in early neonatal death of otherwise healthy litters. This first line of analysis demonstrates the utility of the Pgr-B LSL mouse to examine the role of the PGR-B isoform in different physiologic and pathophysiologic systems that are responsive to progesterone.


Asunto(s)
Ingeniería Genética/métodos , Receptores de Progesterona/genética , Animales , Proliferación Celular , Células Epiteliales/metabolismo , Epitelio/metabolismo , Femenino , Masculino , Glándulas Mamarias Animales/metabolismo , Ratones , Ratones Transgénicos , Modelos Animales , Morfogénesis/genética , Isoformas de Proteínas , Receptores de Progesterona/fisiología
14.
J Biol Chem ; 288(42): 30285-30299, 2013 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-23995840

RESUMEN

The N-terminal domain (NTD) of steroid receptors harbors a transcriptional activation function (AF1) that is composed of an intrinsically disordered polypeptide. We examined the interaction of the TATA-binding protein (TBP) with the NTD of the progesterone receptor (PR) and its ability to regulate AF1 activity through coupled folding and binding. As assessed by solution phase biophysical methods, the isolated NTD of PR contains a large content of random coil, and it is capable of adopting secondary α-helical structure and more stable tertiary folding either in the presence of the natural osmolyte trimethylamine-N-oxide or through a direct interaction with TBP. Hydrogen-deuterium exchange coupled with mass spectrometry confirmed the highly dynamic intrinsically disordered property of the NTD within the context of full-length PR. Deletion mapping and point mutagenesis defined a region of the NTD (amino acids 350-428) required for structural folding in response to TBP interaction. Overexpression of TBP in cells enhanced transcriptional activity mediated by the PR NTD, and deletion mutations showed that a region (amino acids 327-428), similar to that required for TBP-induced folding, was required for functional response. TBP also increased steroid receptor co-activator 1 (SRC-1) interaction with the PR NTD and cooperated with SRC-1 to stimulate NTD-dependent transcriptional activity. These data suggest that TBP can mediate structural reorganization of the NTD to facilitate the binding of co-activators required for maximal transcriptional activation.


Asunto(s)
Coactivador 1 de Receptor Nuclear/metabolismo , Pliegue de Proteína , Receptores de Progesterona/metabolismo , Proteína de Unión a TATA-Box/metabolismo , Activación Transcripcional/fisiología , Secuencia de Aminoácidos , Animales , Línea Celular , Humanos , Coactivador 1 de Receptor Nuclear/química , Coactivador 1 de Receptor Nuclear/genética , Mutación Puntual , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Receptores de Progesterona/química , Receptores de Progesterona/genética , Eliminación de Secuencia , Proteína de Unión a TATA-Box/química , Proteína de Unión a TATA-Box/genética
15.
Sci Rep ; 14(1): 7327, 2024 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538763

RESUMEN

Osteosarcoma is the most prevalent bone tumor in pediatric patients. Neoadjuvant chemotherapy has improved osteosarcoma patient survival, however the 5-year survival rate for localized osteosarcoma is 75% with a 30-50% recurrence rate. We, therefore, sought to identify a prognostic gene signature which could predict poor prognosis in localized osteosarcoma patients. Using the TARGET osteosarcoma transcriptomic dataset, we identified a 13-hub gene signature associated with overall survival and time to death of localized osteosarcoma patients, with the high-risk group showing a 22% and the low-risk group showing 100% overall survival. Furthermore, network analysis identified five modules of co-expressed genes that significantly correlated with survival, and identified 65 pathways enriched across 3 modules, including Hedgehog signaling, which includes 2 of the 13 genes, IHH and GLI1. Subsequently, we demonstrated that GLI antagonists inhibited growth of a recurrent localized PDX-derived cell line with elevated IHH and GLI1 expression, but not a non-relapsed cell line with low pathway activation. Finally, we show that our signature outperforms previously reported signatures in predicting poor prognosis and death within 3 years in patients with localized osteosarcoma.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Humanos , Niño , Pronóstico , Proteína con Dedos de Zinc GLI1/genética , Proteína con Dedos de Zinc GLI1/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Osteosarcoma/patología , Neoplasias Óseas/metabolismo
16.
Cancer Res ; 84(2): 291-304, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-37906431

RESUMEN

Approximately one-third of endocrine-treated women with estrogen receptor alpha-positive (ER+) breast cancers are at risk of recurrence due to intrinsic or acquired resistance. Thus, it is vital to understand the mechanisms underlying endocrine therapy resistance in ER+ breast cancer to improve patient treatment. Mitochondrial fatty acid ß-oxidation (FAO) has been shown to be a major metabolic pathway in triple-negative breast cancer (TNBC) that can activate Src signaling. Here, we found metabolic reprogramming that increases FAO in ER+ breast cancer as a mechanism of resistance to endocrine therapy. A metabolically relevant, integrated gene signature was derived from transcriptomic, metabolomic, and lipidomic analyses in TNBC cells following inhibition of the FAO rate-limiting enzyme carnitine palmitoyl transferase 1 (CPT1), and this TNBC-derived signature was significantly associated with endocrine resistance in patients with ER+ breast cancer. Molecular, genetic, and metabolomic experiments identified activation of AMPK-FAO-oxidative phosphorylation (OXPHOS) signaling in endocrine-resistant ER+ breast cancer. CPT1 knockdown or treatment with FAO inhibitors in vitro and in vivo significantly enhanced the response of ER+ breast cancer cells to endocrine therapy. Consistent with the previous findings in TNBC, endocrine therapy-induced FAO activated the Src pathway in ER+ breast cancer. Src inhibitors suppressed the growth of endocrine-resistant tumors, and the efficacy could be further enhanced by metabolic priming with CPT1 inhibition. Collectively, this study developed and applied a TNBC-derived signature to reveal that metabolic reprogramming to FAO activates the Src pathway to drive endocrine resistance in ER+ breast cancer. SIGNIFICANCE: Increased fatty acid oxidation induced by endocrine therapy activates Src signaling to promote endocrine resistance in breast cancer, which can be overcome using clinically approved therapies targeting FAO and Src.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Línea Celular Tumoral , Fosforilación , Transducción de Señal , Ácidos Grasos/metabolismo , Resistencia a Antineoplásicos/genética
17.
Dev Cell ; 59(1): 33-47.e5, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38101412

RESUMEN

Aging is a risk factor for disease via increased susceptibility to infection, decreased ability to maintain homeostasis, inefficiency in combating stress, and decreased regenerative capacity. Multiple diseases, including urinary tract infection (UTI), are more prevalent with age; however, the mechanisms underlying the impact of aging on the urinary tract mucosa and the correlation between aging and disease remain poorly understood. Here, we show that, relative to young (8-12 weeks) mice, the urothelium of aged (18-24 months) female mice accumulates large lysosomes with reduced acid phosphatase activity and decreased overall autophagic flux in the aged urothelium, indicative of compromised cellular homeostasis. Aged bladders also exhibit basal accumulation of reactive oxygen species (ROS) and a dampened redox response, implying heightened oxidative stress. Furthermore, we identify a canonical senescence-associated secretory phenotype (SASP) in the aged urothelium, along with continuous NLRP3-inflammasome- and Gasdermin-D-dependent pyroptotic cell death. Consequently, aged mice chronically exfoliate urothelial cells, further exacerbating age-related urothelial dysfunction. Upon infection with uropathogenic E. coli, aged mice harbor increased bacterial reservoirs and are more prone to spontaneous recurrent UTI. Finally, we discover that treatment with D-mannose, a natural bioactive monosaccharide, rescues autophagy flux, reverses the SASP, and mitigates ROS and NLRP3/Gasdermin/interleukin (IL)-1ß-driven pyroptotic epithelial cell shedding in aged mice. Collectively, our results demonstrate that normal aging affects bladder physiology, with aging alone increasing baseline cellular stress and susceptibility to infection, and suggest that mannose supplementation could serve as a senotherapeutic to counter age-associated urothelial dysfunction.


Asunto(s)
Proteína con Dominio Pirina 3 de la Familia NLR , Infecciones Urinarias , Ratones , Femenino , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Vejiga Urinaria/metabolismo , Vejiga Urinaria/microbiología , Vejiga Urinaria/patología , Manosa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Escherichia coli/metabolismo , Urotelio/metabolismo , Urotelio/microbiología , Interleucina-1beta , Gasderminas , Infecciones Urinarias/metabolismo , Infecciones Urinarias/microbiología , Infecciones Urinarias/patología , Senescencia Celular
18.
bioRxiv ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38585789

RESUMEN

The transcription repressor REST in the dorsal root ganglion (DRG) is upregulated by peripheral nerve injury and promotes the development of chronic pain. However, the genes targeted by REST in neuropathic pain development remain unclear. The expression levels of 4 opioid receptor (Oprm1, Oprd1, Oprl1, Oprk1) and the cannabinoid CB1 receptor (Cnr1) genes in the DRG regulate nociception. In this study, we determined the role of REST in the control of their expression in the DRG induced by spared nerve injury (SNI) in both male and female mice. Transcriptomic analyses of male mouse DRGs followed by quantitative reverse transcription polymerase chain reaction analyses of both male and female mouse DRGs showed that SNI upregulated expression of Rest and downregulated mRNA levels of all 4 opioid receptor and Cnr1 genes, but Oprm1 was upregulated in female mice. Analysis of publicly available bioinformatic data suggested that REST binds to the promoter regions of Oprm1 and Cnr1. Chromatin immunoprecipitation analyses indicated differing levels of REST at these promoters in male and female mice. Full-length Rest conditional knockout in primary sensory neurons reduced SNI-induced pain hypersensitivity and rescued the SNI-induced reduction in the expression of Oprd1 and Cnr1 in the DRG in both male and female mice. Our results suggest that nerve injury represses the transcription of Oprd1 and Cnr1 via REST in primary sensory neurons and that REST is a potential therapeutic target for neuropathic pain.

19.
bioRxiv ; 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38464252

RESUMEN

Centrosomes play a fundamental role in nucleating and organizing microtubules in the cell and are vital for faithful chromosome segregation and maintenance of genomic stability. Loss of structural or functional integrity of centrosomes causes genomic instability and is a driver of oncogenesis. The lysine demethylase 4A (KDM4A) is an epigenetic 'eraser' of chromatin methyl marks, which we show also localizes to the centrosome with single molecule resolution. We additionally discovered KDM4A demethylase enzymatic activity is required to maintain centrosome homeostasis, and is required for centrosome integrity, a new functionality unlinked to altered expression of genes regulating centrosome number. We find rather, that KDM4A interacts with both mother and daughter centriolar proteins to localize to the centrosome in all stages of mitosis. Loss of KDM4A results in supernumerary centrosomes and accrual of chromosome segregation errors including chromatin bridges and micronuclei, markers of genomic instability. In summary, these data highlight a novel role for an epigenetic 'eraser' regulating centrosome integrity, mitotic fidelity, and genomic stability at the centrosome.

20.
bioRxiv ; 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-37292968

RESUMEN

Background & Aims: Human intestinal enteroids (HIEs) are gaining recognition as physiologically relevant models of the intestinal epithelium. While HIEs from adults are used extensively in biomedical research, few studies have used HIEs from infants. Considering the dramatic developmental changes that occur during infancy, it is important to establish models that represent infant intestinal characteristics and physiological responses. Methods: We established jejunal HIEs from infant surgical samples and performed comparisons to jejunal HIEs from adults using RNA sequencing (RNA-Seq) and morphologic analyses. We validated differences in key pathways through functional studies and determined if these cultures recapitulate known features of the infant intestinal epithelium. Results: RNA-Seq analysis showed significant differences in the transcriptome of infant and adult HIEs, including differences in genes and pathways associated with cell differentiation and proliferation, tissue development, lipid metabolism, innate immunity, and biological adhesion. Validating these results, we observed a higher abundance of cells expressing specific enterocyte, goblet cell and enteroendocrine cell markers in differentiated infant HIE monolayers, and greater numbers of proliferative cells in undifferentiated 3D cultures. Compared to adult HIEs, infant HIEs portray characteristics of an immature gastrointestinal epithelium including significantly shorter cell height, lower epithelial barrier integrity, and lower innate immune responses to infection with an oral poliovirus vaccine. Conclusions: HIEs established from infant intestinal tissues reflect characteristics of the infant gut and are distinct from adult cultures. Our data support the use of infant HIEs as an ex-vivo model to advance studies of infant-specific diseases and drug discovery for this population.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA