Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Clin Transl Radiat Oncol ; 27: 164-168, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33681483

RESUMEN

BACKGROUND: Deep-inspiration breath-hold (DIBH) reduces radiation dose to the heart in patients undergoing locoregional breast radiotherapy. In the context of tangential irradiation of the breast/ chest wall, a voluntary breath hold (vDIBH) technique has been shown to be as reproducible as a machine-assisted breath hold technique using the active breathing co-ordinator (ABC™, Elekta, Crawley, UK, ABC_DIBH). This study compares set-up reproducibility for vDIBH versus ABC_DIBH in patients undergoing volumetric-modulated arc radiotherapy (VMAT) for breast cancer, both with and without wax bolus. METHOD: Patients with breast cancer requiring pan regional lymph node VMAT +/- wax bolus in breath-hold were CT scanned in vDIBH and ABC_DIBH. Patients were randomised to receive one technique for fractions 1-7 and the other for fractions 8-15. Daily cone beam computed tomography (CBCT) was performed and registered to planning-CT using bony anatomy. Within-patient comparisons of mean daily chest wall position were made using a paired t-test. Population, systematic (∑) and random errors (α) were estimated. Intrafraction reproducibility was assessed by comparing chest wall position and diaphragm movement between consecutive breath holds on CBCT. RESULTS: 16 patients were recruited. All completed treatment with both techniques (9 patients with wax bolus, 7 patients without). CBCT derived ∑ were 2.1-6.4 mm (ABC_DIBH) and 2.1-4.9 mm (vDIBH), α were 1.7-2.6 mm (ABC_DIBH) and 2.2-2.7 mm (vDIBH) and mean daily chest wall displacements (MD) were 0.0-1.5 mm (ABC_DIBH) and -0.1-1.6 vDIBH (all p non-significant). Chest wall and diaphragm position was equivalent between consecutive breath holds in ABC and vDIBH (median difference 1.0 mm and 0.8 mm respectively, non p significant) demonstrating equivalent intrafraction reproducibility. CONCLUSION: This study demonstrates that a simple voluntary breath hold technique is feasible in combination with VMAT (+/- bolus) and is as reproducible as ABC_DIBH with VMAT for the irradiation of the breast and axillary and IMC lymph nodes in breast cancer patients.

2.
Appl Opt ; 49(11): 2014-21, 2010 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-20389999

RESUMEN

In this paper we present spatially mapped point-spread function (PSF) measurements of an optical coherence tomography (OCT) instrument and subsequent spatial deconvolution. The OCT B-scan image plane was divided into 2400 subimages, for which PSFs were determined from OCT measurements of a specially designed phantom. Each PSF was deconvolved from its corresponding subimage of the phantom using the Lucy-Richardson algorithm. Following deconvolution, all of the subimages were reassembled to form a final deconvolved image, from which the resolution improvement was quantitatively assessed. The lateral resolution was found to improve by 3.1 microm compared to an axial resolution enhancement of 4.5 microm. The spatial uniformity of both axial and lateral resolution was also observed to increase following deconvolution, demonstrating the advantage of deconvolving local PSFs from their associated subimages.


Asunto(s)
Imagenología Tridimensional/métodos , Óptica y Fotónica , Tomografía de Coherencia Óptica/métodos , Algoritmos , Interpretación de Imagen Asistida por Computador/métodos , Modelos Estadísticos , Distribución Normal , Tamaño de la Partícula , Fantasmas de Imagen
3.
PLoS One ; 12(1): e0169664, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28107368

RESUMEN

Elastography, the imaging of elastic properties of soft tissues, is well developed for macroscopic clinical imaging of soft tissues and can provide useful information about various pathological processes which is complementary to that provided by the original modality. Scaling down of this technique should ply the field of cellular biology with valuable information with regard to elastic properties of cells and their environment. This paper evaluates the potential to develop such a tool by modifying a commercial optical coherence tomography (OCT) device to measure the speed of shear waves propagating in a three-dimensional (3D) medium. A needle, embedded in the gel, was excited to vibrate along its long axis and the displacement as a function of time and distance from the needle associated with the resulting shear waves was detected using four M-mode images acquired simultaneously using a commercial four-channel swept-source OCT system. Shear-wave time of arrival (TOA) was detected by tracking the axial OCT-speckle motion using cross-correlation methods. Shear-wave speed was then calculated from inter-channel differences of TOA for a single burst (the relative TOA method) and compared with the shear-wave speed determined from positional differences of TOA for a single channel over multiple bursts (the absolute TOA method). For homogeneous gels the relative method provided shear-wave speed with acceptable precision and accuracy when judged against the expected linear dependence of shear modulus on gelatine concentration (R2 = 0.95) and ultimate resolution capabilities limited by 184µm inter-channel distance. This overall approach shows promise for its eventual provision as a research tool in cancer cell biology. Further work is required to optimize parameters such as vibration frequency, burst length and amplitude, and to assess the lateral and axial resolutions of this type of device as well as to create 3D elastograms.


Asunto(s)
Diagnóstico por Imagen de Elasticidad/métodos , Tomografía de Coherencia Óptica/métodos , Fantasmas de Imagen
4.
Phys Med Biol ; 55(18): 5515-28, 2010 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-20798457

RESUMEN

A technique for generating contrast in two-dimensional shear strain elastograms from a localized stress is presented. The technique involves generating a non-uniform, localized stress via a magnetically actuated implant. Its effectiveness is demonstrated using finite-element simulations and a phantom study provides experimental verification of this. The method is applied to a superficial cancerous lesion model represented as a stiff inclusion in normal tissue. The lesion was best distinguished from its surroundings using total shear strain elastograms, rather than individual strain components. In experimental phantom studies, the lesion was imaged using optical coherence tomography (OCT) and could still be distinguished in elastograms when not readily identifiable in standard OCT images.


Asunto(s)
Diagnóstico por Imagen de Elasticidad/métodos , Estrés Mecánico , Tomografía de Coherencia Óptica/métodos , Análisis de Elementos Finitos , Modelos Biológicos , Fantasmas de Imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA