Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(43): E10197-E10205, 2018 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-30297415

RESUMEN

Despite the growing evidence suggesting that long noncoding RNAs (lncRNAs) are critical regulators of several biological processes, their functions in the nervous system remain elusive. We have identified an lncRNA, GM12371, in hippocampal neurons that is enriched in the nucleus and necessary for synaptic communication, synapse density, synapse morphology, and dendritic tree complexity. Mechanistically, GM12371 regulates the expression of several genes involved in neuronal development and differentiation, as well as expression of specific lncRNAs and their cognate mRNA targets. Furthermore, we find that cAMP-PKA signaling up-regulates the expression of GM12371 and that its expression is essential for the activity-dependent changes in synaptic transmission in hippocampal neurons. Taken together, our data establish a key role for GM12371 in regulating synapse function.


Asunto(s)
Regulación de la Expresión Génica/genética , ARN Largo no Codificante/genética , Sinapsis/genética , Transcripción Genética/genética , Animales , Diferenciación Celular/genética , Femenino , Hipocampo/fisiología , Ratones , Neuronas/fisiología , Embarazo , Transducción de Señal/genética , Regulación hacia Arriba/genética
2.
Neurobiol Learn Mem ; 163: 107034, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31176693

RESUMEN

While protein-coding genes have been widely studied in learning and memory, the role of the non-coding genome has only recently been investigated. With advances in high throughput sequencing technologies and functional profiling methods, multiple long noncoding RNAs (lncRNAs) have been functionally and mechanistically linked with neurobiological processes related with learning and memory, as well disorders that lead to memory impairment. However, these macromolecules are still a subject of controversy and intense scrutiny regarding the proper criteria for determining their functionality and their evolution in the central nervous system. Recent studies have implicated multiple lncRNAs as critical regulators of gene expression in the central nervous system and mediate learning processes. In this review, we explore possible explanations for how lncRNAs are evolved in our central nervous system, discuss our current understanding of their involvement in learning and memory related disorders, and describe emerging tools for studying lncRNAs.


Asunto(s)
Discapacidades para el Aprendizaje/metabolismo , Aprendizaje , Trastornos de la Memoria/metabolismo , Memoria , ARN Largo no Codificante/fisiología , Animales , Trastornos del Conocimiento/metabolismo , Humanos , ARN Largo no Codificante/metabolismo
3.
Nat Commun ; 15(1): 2694, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538603

RESUMEN

Long noncoding RNAs (lncRNAs) play crucial roles in maintaining cell homeostasis and function. However, it remains largely unknown whether and how neuronal activity impacts the transcriptional regulation of lncRNAs, or if this leads to synapse-related changes and contributes to the formation of long-term memories. Here, we report the identification of a lncRNA, SLAMR, which becomes enriched in CA1-hippocampal neurons upon contextual fear conditioning but not in CA3 neurons. SLAMR is transported along dendrites via the molecular motor KIF5C and is recruited to the synapse upon stimulation. Loss of function of SLAMR reduces dendritic complexity and impairs activity-dependent changes in spine structural plasticity and translation. Gain of function of SLAMR, in contrast, enhances dendritic complexity, spine density, and translation. Analyses of the SLAMR interactome reveal its association with CaMKIIα protein through a 220-nucleotide element also involved in SLAMR transport. A CaMKII reporter reveals a basal reduction in CaMKII activity with SLAMR loss-of-function. Furthermore, the selective loss of SLAMR function in CA1 disrupts the consolidation of fear memory in male mice, without affecting their acquisition, recall, or extinction, or spatial memory. Together, these results provide new molecular and functional insight into activity-dependent changes at the synapse and consolidation of contextual fear.


Asunto(s)
ARN Largo no Codificante , Ratones , Masculino , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Neuronas/metabolismo , Hipocampo/fisiología , Recuerdo Mental/fisiología , Plasticidad Neuronal/genética , Ratones Endogámicos C57BL
4.
Res Sq ; 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36993323

RESUMEN

LncRNAs are involved in critical processes for cell homeostasis and function. However, it remains largely unknown whether and how the transcriptional regulation of long noncoding RNAs results in activity-dependent changes at the synapse and facilitate formation of long-term memories. Here, we report the identification of a novel lncRNA, SLAMR, that becomes enriched in CA1- but not in CA3-hippocampal neurons upon contextual fear conditioning. SLAMR is transported to dendrites via the molecular motor KIF5C and recruited to the synapse in response to stimulation. Loss of function of SLAMR reduced dendritic complexity and impaired activity dependent changes in spine structural plasticity. Interestingly, gain of function of SLAMR enhanced dendritic complexity, and spine density through enhanced translation. Analyses of the SLAMR interactome revealed its association with CaMKIIα protein through a 220-nucleotide element and its modulation of CaMKIIα activity. Furthermore, loss-of-function of SLAMR in CA1 selectively impairs consolidation but neither acquisition, recall, nor extinction of fear memory and spatial memory. Together, these results establish a new mechanism for activity dependent changes at the synapse and consolidation of contextual fear.

5.
Sci Adv ; 7(16)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33863727

RESUMEN

Activity-dependent structural plasticity at the synapse requires specific changes in the neuronal transcriptome. While much is known about the role of coding elements in this process, the role of the long noncoding transcriptome remains elusive. Here, we report the discovery of an intronic long noncoding RNA (lncRNA)-termed ADEPTR-that is up-regulated and synaptically transported in a cAMP/PKA-dependent manner in hippocampal neurons, independently of its protein-coding host gene. Loss of ADEPTR function suppresses activity-dependent changes in synaptic transmission and structural plasticity of dendritic spines. Mechanistically, dendritic localization of ADEPTR is mediated by molecular motor protein Kif2A. ADEPTR physically binds to actin-scaffolding regulators ankyrin (AnkB) and spectrin (Sptn1) via a conserved sequence and is required for their dendritic localization. Together, this study demonstrates how activity-dependent synaptic targeting of an lncRNA mediates structural plasticity at the synapse.

6.
Cell Rep ; 36(2): 109369, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34260917

RESUMEN

Synaptic structural plasticity, key to long-term memory storage, requires translation of localized RNAs delivered by long-distance transport from the neuronal cell body. Mechanisms and regulation of this system remain elusive. Here, we explore the roles of KIF5C and KIF3A, two members of kinesin superfamily of molecular motors (Kifs), and find that loss of function of either kinesin decreases dendritic arborization and spine density whereas gain of function of KIF5C enhances it. KIF5C function is a rate-determining component of local translation and is associated with ∼650 RNAs, including EIF3G, a regulator of translation initiation, and plasticity-associated RNAs. Loss of function of KIF5C in dorsal hippocampal CA1 neurons constrains both spatial and contextual fear memory, whereas gain of function specifically enhances spatial memory and extinction of contextual fear. KIF5C-mediated long-distance transport of local translation substrates proves a key mechanism underlying structural plasticity and memory.


Asunto(s)
Cinesinas/metabolismo , Memoria a Largo Plazo , Proteínas Motoras Moleculares/metabolismo , Plasticidad Neuronal , Biosíntesis de Proteínas , Animales , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Espinas Dendríticas/metabolismo , Potenciales Postsinápticos Excitadores , Miedo , Femenino , Mutación con Ganancia de Función , Células HEK293 , Hipocampo/metabolismo , Humanos , Aprendizaje , Masculino , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/patología , Trastornos de la Memoria/fisiopatología , Ratones Endogámicos C57BL , Transporte de ARN , Transducción de Señal , Sinapsis/metabolismo , Transmisión Sináptica
7.
Front Cell Neurosci ; 14: 521199, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33192305

RESUMEN

Neurons require a well-coordinated intercellular transport system to maintain their normal cellular function and morphology. The kinesin family of proteins (KIFs) fills this role by regulating the transport of a diverse array of cargos in post-mitotic cells. On the other hand, in mitotic cells, KIFs facilitate the fidelity of the cellular division machinery. Though certain mitotic KIFs function in post-mitotic neurons, little is known about them. We studied the role of a mitotic KIF (KIF3B) in neuronal architecture. We find that the RNAi mediated knockdown of KIF3B in primary cortical neurons resulted in an increase in spine density; the number of thin and mushroom spines; and dendritic branching. Consistent with the change in spine density, we observed a specific increase in the distribution of the excitatory post-synaptic protein, PSD-95 in KIF3B knockdown neurons. Interestingly, overexpression of KIF3B produced a reduction in spine density, in particular mushroom spines, and a decrease in dendritic branching. These studies suggest that KIF3B is a key determinant of cortical neuron morphology and that it functions as an inhibitory constraint on structural plasticity, further illuminating the significance of mitotic KIFs in post-mitotic neurons.

8.
Sci Rep ; 8(1): 17419, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30479371

RESUMEN

Despite our understanding of the functions of the kinesin family of motor proteins (Kifs) in neurons, their specific roles in neuronal communication are less understood. To address this, by carrying out RNAi-mediated loss of function studies, we assessed the necessity of 18 Kifs in excitatory synaptic transmission in mouse primary hippocampal neurons prepared from both sexes. Our measurements of excitatory post-synaptic currents (EPSCs) have identified 7 Kifs that were found to be not critical and 11 Kifs that are essential for synaptic transmission by impacting either frequency or amplitude or both components of EPSCs. Intriguingly we found that knockdown of mitotic Kif4A and Kif11 and post-mitotic Kif21B resulted in an increase in EPSCs suggesting that they function as inhibitory constraints on synaptic transmission. Furthermore, Kifs (11, 21B, 13B) with distinct effects on synaptic transmission are expressed in the same hippocampal neuron. Mechanistically, unlike Kif21B, Kif11 requires the activity of pre-synaptic NMDARs. In addition, we find that Kif11 knockdown enhanced dendritic arborization, synapse number, expression of synaptic vesicle proteins synaptophysin and active zone protein Piccolo. Moreover, expression of Piccolo constrained Kif11 function in synaptic transmission. Together these results suggest that neurons are able to utilize specific Kifs as tools for calibrating synaptic function. These studies bring novel insights into the biology of Kifs and functioning of neural circuits.


Asunto(s)
Potenciales Postsinápticos Excitadores , Cinesinas/metabolismo , Neuronas/metabolismo , Animales , Células Cultivadas , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Hipocampo/citología , Cinesinas/genética , Ratones , Neuronas/fisiología , Neuropéptidos/genética , Neuropéptidos/metabolismo , Sinaptofisina/genética , Sinaptofisina/metabolismo
9.
Brain Res ; 1659: 148-155, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28130052

RESUMEN

Methamphetamine (METH) is a widely abused psychostimulant displaying potent addictive and neurotoxic properties. METH induces neurotoxicity of dopaminergic terminals and striatal neurons in the striatum. Despite much information on neurotransmitters, the role of neuropeptides is poorly understood. In this study, we investigated the role of the neuropeptide neurotensin on the METH-induced apoptosis of some striatal neurons in mice. We observed that a single injection of METH (30mg/kg, ip) induced the loss of approximately 15% of striatal neurons. An agonist of the neurotensin receptor 1 (PD149163, ip at various doses) attenuated the METH-induced striatal neuron apoptosis. Utilizing quantitative real time PCR, we showed that METH also up-regulated neurotensin gene expression with 96% increase in preproneurotensin mRNA levels in the striatum as compared to the control. Additionally, NTR1 agonist (ip injection) attenuated hyperthermia at 2h post-METH injection; hyperthermia is a putative and significant component of METH-induced neurotoxicity. To investigate the role of neurotensin without affecting core body temperature, we performed stereotactic injection of PD149163 into the striatum and observed that this compound maintained attenuated the METH-induced apoptosis in the striatum, while leaving core body temperature unaffected. There was no effect of NTR1 agonist on METH-induced dopamine terminal degeneration, as evidenced by tyrosine hydroxylase levels determined by Western blot. These data indicate that the neuropeptide neurotensin modulates the striatal neuronal apoptosis induced by METH through diverse mechanisms that need to be investigated. Furthermore, due to its neuroprotective properties, neurotensin receptor agonists show potential as drug candidates for the treatment of METH abuse and some neurological disorders.


Asunto(s)
Apoptosis/efectos de los fármacos , Cuerpo Estriado/efectos de los fármacos , Metanfetamina/toxicidad , Neurotensina/análogos & derivados , Neurotransmisores/farmacología , Receptores de Neurotensina/agonistas , Animales , Apoptosis/fisiología , Estimulantes del Sistema Nervioso Central/toxicidad , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Fiebre/inducido químicamente , Fiebre/tratamiento farmacológico , Fiebre/metabolismo , Fiebre/patología , Masculino , Ratones Endogámicos ICR , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Fármacos Neuroprotectores/farmacología , Neurotensina/metabolismo , Neurotensina/farmacología , Precursores de Proteínas/metabolismo , ARN Mensajero/metabolismo , Receptores de Neurotensina/metabolismo , Tirosina 3-Monooxigenasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA