Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 238
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(34): e2411167121, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39136991

RESUMEN

Evidence accumulates that the cerebellum's role in the brain is not restricted to motor functions. Rather, cerebellar activity seems to be crucial for a variety of tasks that rely on precise event timing and prediction. Due to its complex structure and importance in communication, human speech requires a particularly precise and predictive coordination of neural processes to be successfully comprehended. Recent studies proposed that the cerebellum is indeed a major contributor to speech processing, but how this contribution is achieved mechanistically remains poorly understood. The current study aimed to reveal a mechanism underlying cortico-cerebellar coordination and demonstrate its speech-specificity. In a reanalysis of magnetoencephalography data, we found that activity in the cerebellum aligned to rhythmic sequences of noise-vocoded speech, irrespective of its intelligibility. We then tested whether these "entrained" responses persist, and how they interact with other brain regions, when a rhythmic stimulus stopped and temporal predictions had to be updated. We found that only intelligible speech produced sustained rhythmic responses in the cerebellum. During this "entrainment echo," but not during rhythmic speech itself, cerebellar activity was coupled with that in the left inferior frontal gyrus, and specifically at rates corresponding to the preceding stimulus rhythm. This finding represents evidence for specific cerebellum-driven temporal predictions in speech processing and their relay to cortical regions.


Asunto(s)
Cerebelo , Magnetoencefalografía , Humanos , Cerebelo/fisiología , Masculino , Femenino , Adulto , Percepción del Habla/fisiología , Adulto Joven , Habla/fisiología , Inteligibilidad del Habla/fisiología
2.
PLoS Biol ; 21(7): e3002178, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37478152

RESUMEN

Speech production and perception are fundamental processes of human cognition that both rely on intricate processing mechanisms that are still poorly understood. Here, we study these processes by using magnetoencephalography (MEG) to comprehensively map connectivity of regional brain activity within the brain and to the speech envelope during continuous speaking and listening. Our results reveal not only a partly shared neural substrate for both processes but also a dissociation in space, delay, and frequency. Neural activity in motor and frontal areas is coupled to succeeding speech in delta band (1 to 3 Hz), whereas coupling in the theta range follows speech in temporal areas during speaking. Neural connectivity results showed a separation of bottom-up and top-down signalling in distinct frequency bands during speaking. Here, we show that frequency-specific connectivity channels for bottom-up and top-down signalling support continuous speaking and listening. These findings further shed light on the complex interplay between different brain regions involved in speech production and perception.

3.
J Neurosci ; 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39379154

RESUMEN

Viewing brain function through the lense of other physiological processes has critically added to our understanding of human cognition. Further advances though may need a closer look at the interactions between these physiological processes themselves. Here we characterise the interplay of the highly periodic, and metabolically vital respiratory process and fluctuations in arousal neuromodulation, a process classically seen as non-periodic. In data of three experiments (N = 56 / 27 / 25 women and men) we tested for covariations in respiratory and pupil size (arousal) dynamics. After substantiating a robust coupling in the largest dataset, we further show that coupling strength decreases during task performance compared with rest, and that it mirrors a decreased respiratory rate when participants take deeper breaths. Taken together, these findings suggest a stronger link between respiratory and arousal processes than previously thought. Moreover, these links imply a stronger coupling during periods of rest, and the effect of respiratory rate on the coupling suggests a driving role. As a consequence, studying the role of neuromodulatory arousal on cortical function may also need to consider respiratory influences.Significance statement We characterise the interplay of the respiratory rhythm and pupil diameter dynamics as a well-known proxy for arousal. Although we consistently find respiratory modulation of pupillary changes, they were most pronounced during periods of rest (compared to during task performance) and dependent on respiratory rate (deep vs. normal breathing).

4.
Mol Psychiatry ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806692

RESUMEN

Excitation/inhibition (E/I) balance plays important roles in mental disorders. Bioactive phospholipids like lysophosphatidic acid (LPA) are synthesized by the enzyme autotaxin (ATX) at cortical synapses and modulate glutamatergic transmission, and eventually alter E/I balance of cortical networks. Here, we analyzed functional consequences of altered E/I balance in 25 human subjects induced by genetic disruption of the synaptic lipid signaling modifier PRG-1, which were compared to 25 age and sex matched control subjects. Furthermore, we tested therapeutic options targeting ATX in a related mouse line. Using EEG combined with TMS in an instructed fear paradigm, neuropsychological analysis and an fMRI based episodic memory task, we found intermediate phenotypes of mental disorders in human carriers of a loss-of-function single nucleotide polymorphism of PRG-1 (PRG-1R345T/WT). Prg-1R346T/WT animals phenocopied human carriers showing increased anxiety, a depressive phenotype and lower stress resilience. Network analysis revealed that coherence and phase-amplitude coupling were altered by PRG-1 deficiency in memory related circuits in humans and mice alike. Brain oscillation phenotypes were restored by inhibtion of ATX in Prg-1 deficient mice indicating an interventional potential for mental disorders.

5.
Hum Brain Mapp ; 45(11): e26810, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39140847

RESUMEN

Source analysis of magnetoencephalography (MEG) data requires the computation of the magnetic fields induced by current sources in the brain. This so-called MEG forward problem includes an accurate estimation of the volume conduction effects in the human head. Here, we introduce the Cut finite element method (CutFEM) for the MEG forward problem. CutFEM's meshing process imposes fewer restrictions on tissue anatomy than tetrahedral meshes while being able to mesh curved geometries contrary to hexahedral meshing. To evaluate the new approach, we compare CutFEM with a boundary element method (BEM) that distinguishes three tissue compartments and a 6-compartment hexahedral FEM in an n = 19 group study of somatosensory evoked fields (SEF). The neural generators of the 20 ms post-stimulus SEF components (M20) are reconstructed using both an unregularized and a regularized inversion approach. Changing the forward model resulted in reconstruction differences of about 1 centimeter in location and considerable differences in orientation. The tested 6-compartment FEM approaches significantly increase the goodness of fit to the measured data compared with the 3-compartment BEM. They also demonstrate higher quasi-radial contributions for sources below the gyral crowns. Furthermore, CutFEM improves source separability compared with both other approaches. We conclude that head models with 6 compartments rather than 3 and the new CutFEM approach are valuable additions to MEG source reconstruction, in particular for sources that are predominantly radial.


Asunto(s)
Potenciales Evocados Somatosensoriales , Análisis de Elementos Finitos , Magnetoencefalografía , Humanos , Magnetoencefalografía/métodos , Potenciales Evocados Somatosensoriales/fisiología , Adulto , Masculino , Femenino , Modelos Neurológicos , Mapeo Encefálico/métodos , Corteza Somatosensorial/fisiología , Corteza Somatosensorial/diagnóstico por imagen , Adulto Joven
6.
PLoS Biol ; 19(11): e3001457, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34762645

RESUMEN

Despite recent advances in understanding how respiration affects neural signalling to influence perception, cognition, and behaviour, it is yet unclear to what extent breathing modulates brain oscillations at rest. We acquired respiration and resting state magnetoencephalography (MEG) data from human participants to investigate if, where, and how respiration cyclically modulates oscillatory amplitudes (2 to 150 Hz). Using measures of phase-amplitude coupling, we show respiration-modulated brain oscillations (RMBOs) across all major frequency bands. Sources of these modulations spanned a widespread network of cortical and subcortical brain areas with distinct spectrotemporal modulation profiles. Globally, delta and gamma band modulations varied with distance to the head centre, with stronger modulations at distal (versus central) cortical sites. Overall, we provide the first comprehensive mapping of RMBOs across the entire brain, highlighting respiration-brain coupling as a fundamental mechanism to shape neural processing within canonical resting state and respiratory control networks (RCNs).


Asunto(s)
Corteza Cerebral/fisiología , Red Nerviosa/fisiología , Respiración , Descanso/fisiología , Corteza Cerebral/anatomía & histología , Femenino , Humanos , Masculino , Factores de Tiempo , Adulto Joven
7.
Cereb Cortex ; 33(10): 6273-6281, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-36627246

RESUMEN

When we attentively listen to an individual's speech, our brain activity dynamically aligns to the incoming acoustic input at multiple timescales. Although this systematic alignment between ongoing brain activity and speech in auditory brain areas is well established, the acoustic events that drive this phase-locking are not fully understood. Here, we use magnetoencephalographic recordings of 24 human participants (12 females) while they were listening to a 1 h story. We show that whereas speech-brain coupling is associated with sustained acoustic fluctuations in the speech envelope in the theta-frequency range (4-7 Hz), speech tracking in the low-frequency delta (below 1 Hz) was strongest around onsets of speech, like the beginning of a sentence. Crucially, delta tracking in bilateral auditory areas was not sustained after onsets, proposing a delta tracking during continuous speech perception that is driven by speech onsets. We conclude that both onsets and sustained components of speech contribute differentially to speech tracking in delta- and theta-frequency bands, orchestrating sampling of continuous speech. Thus, our results suggest a temporal dissociation of acoustically driven oscillatory activity in auditory areas during speech tracking, providing valuable implications for orchestration of speech tracking at multiple time scales.


Asunto(s)
Corteza Auditiva , Percepción del Habla , Femenino , Humanos , Habla , Estimulación Acústica/métodos , Magnetoencefalografía/métodos , Percepción Auditiva
8.
J Chem Phys ; 160(17)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38748005

RESUMEN

Molecular-based equations of state for describing the thermodynamics of chain molecules are often based on mean-field like arguments that reduce the problem of describing the interactions between chains to a simpler one involving only nonbonded monomers. While for dense liquids such arguments are known to work well, at low density they are typically less appropriate due to an incomplete description of the effect of chain connectivity on the local environment of the chains' monomer segments. To address this issue, we develop three semi-empirical approaches that significantly improve the thermodynamic description of chain molecules at low density. The approaches are developed for chain molecules with repulsive intermolecular forces; therefore, they could be used as reference models for developing equations of the state of real fluids based on perturbation theory. All three approaches are extensions of Wertheim's first-order thermodynamic perturbation theory (TPT1) for polymerization. The first model, referred to as TPT1-v, incorporates a second-virial correction that is scaled to zero at liquid-like densities. The second model, referred to as TPT1-y, introduces a Helmholtz-energy contribution to account for correlations between next-nearest-neighbor segments within chain molecules. The third approach, called TPT-E, directly modifies TPT1 without utilizing an additional Helmholtz energy contribution. By employing TPT1 at the core of these approaches, we ensure an accurate description of mixtures and enable a seamless extension from chains of tangentially bonded hard-sphere segments of equal size to hetero-segmented chains, fused chains, and chains of soft repulsive segments (which are influenced by temperature). The low-density corrections implemented in TPT1 are designed to preserve these good characteristics, as confirmed through comparisons with novel molecular simulation results for the pressure of various chain fluids. TPT1-v exhibits excellent transferability across different chain types, but it relies on knowing the second virial coefficient of the chain molecules, which is non-trivial to obtain and determined here using Monte Carlo simulation. The TPT1-y model, on the other hand, achieves comparable accuracy to TPT1-v while being fully predictive, requiring no input besides the geometry of the chain molecules.

9.
PLoS Biol ; 18(8): e3000840, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32845876

RESUMEN

Humans' propensity to acquire literacy relates to several factors, including the ability to understand speech in noise (SiN). Still, the nature of the relation between reading and SiN perception abilities remains poorly understood. Here, we dissect the interplay between (1) reading abilities, (2) classical behavioral predictors of reading (phonological awareness, phonological memory, and rapid automatized naming), and (3) electrophysiological markers of SiN perception in 99 elementary school children (26 with dyslexia). We demonstrate that, in typical readers, cortical representation of the phrasal content of SiN relates to the degree of development of the lexical (but not sublexical) reading strategy. In contrast, classical behavioral predictors of reading abilities and the ability to benefit from visual speech to represent the syllabic content of SiN account for global reading performance (i.e., speed and accuracy of lexical and sublexical reading). In individuals with dyslexia, we found preserved integration of visual speech information to optimize processing of syntactic information but not to sustain acoustic/phonemic processing. Finally, within children with dyslexia, measures of cortical representation of the phrasal content of SiN were negatively related to reading speed and positively related to the compromise between reading precision and reading speed, potentially owing to compensatory attentional mechanisms. These results clarify the nature of the relation between SiN perception and reading abilities in typical child readers and children with dyslexia and identify novel electrophysiological markers of emergent literacy.


Asunto(s)
Corteza Cerebral/fisiología , Ruido , Lectura , Habla/fisiología , Conducta , Niño , Dislexia/fisiopatología , Humanos , Modelos Lineales , Neuroimagen , Fonética
10.
J Chem Phys ; 158(16)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37099609

RESUMEN

We develop a physically based equation of state that describes Mie ν-6 fluids with an accuracy comparable to that of state-of-the-art empirical models. The equation of state is developed within the framework of the uv-theory [T. van Westen and J. Gross, J. Chem. Phys. 155, 244501 (2021)], which is modified by incorporating the third virial coefficient B3 in the low-density description of the model. The new model interpolates between a first-order Weeks-Chandler-Andersen (WCA) perturbation theory at high densities and a modified first-order WCA theory that recovers the virial expansion up to B3 at low densities. A new algebraic equation for the third virial coefficient of Mie ν-6 fluids is developed-other inputs are taken from previous work. Predicted thermodynamic properties and phase equilibria are compared to a comprehensive database of molecular simulation results from the literature, including Mie fluids of repulsive exponents 9 ≤ ν ≤ 48. The new equation of state is applicable to states with densities up to ρ*(T*)⪅1.1+0.12T* and temperatures T* > 0.3. For the Lennard-Jones fluid (ν = 12), the performance of the model is comparable to that of the best empirical equations of state available. As compared to empirical models, the physical basis of the new model provides several advantages, however: (1) the new model is applicable to Mie fluids of repulsive exponents 9 ≤ ν ≤ 48 instead of only ν = 12, (2) the model leads to a better description of the meta-stable and unstable region (which is important for describing interfacial properties by classical density functional theory), and (3) being a first-order perturbation theory, the new model (potentially) allows an easier and more rigorous extension to non-spherical (chain) fluids and mixtures.

11.
J Chem Phys ; 158(10): 104107, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36922124

RESUMEN

We present a classical density functional theory (DFT) for fluid mixtures that is based on a third-order thermodynamic perturbation theory of Feynman-Hibbs-corrected Mie potentials. The DFT is developed to study the interfacial properties of hydrogen, helium, neon, deuterium, and their mixtures, i.e., fluids that are strongly influenced by quantum effects at low temperatures. White Bear fundamental measure theory is used for the hard-sphere contribution of the Helmholtz energy functional, and a weighted density approximation is used for the dispersion contribution. For mixtures, a contribution is included to account for non-additivity in the Lorentz-Berthelot combination rule. Predictions of the radial distribution function from DFT are in excellent agreement with results from molecular simulations, both for pure components and mixtures. Above the normal boiling point and 5% below the critical temperature, the DFT yields surface tensions of neon, hydrogen, and deuterium with average deviations from experiments of 7.5%, 4.4%, and 1.8%, respectively. The surface tensions of hydrogen/deuterium, para-hydrogen/helium, deuterium/helium, and hydrogen/neon mixtures are reproduced with a mean absolute error of 5.4%, 8.1%, 1.3%, and 7.5%, respectively. The surface tensions are predicted with an excellent accuracy at temperatures above 20 K. The poor accuracy below 20 K is due to the inability of Feynman-Hibbs-corrected Mie potentials to represent the real fluid behavior at these conditions, motivating the development of new intermolecular potentials. This DFT can be leveraged in the future to study confined fluids and assess the performance of porous materials for hydrogen storage and transport.

12.
Laryngorhinootologie ; 102(S 01): S59-S66, 2023 05.
Artículo en Inglés, Alemán | MEDLINE | ID: mdl-37130531

RESUMEN

The term of subjective tinnitus is used to describe a perceived noise without an external sound source. Therefore, it seems to be obvious that tinnitus can be understood as purely auditory, sensory problem. From a clinical point of view, however, this is a very inadequate description, as there are significant comorbidities associated with chronic tinnitus. Neurophysiological investigations with different imaging techniques give a very similar picture, because not only the auditory system is affected in chronic tinnitus patients, but also a widely ramified subcortical and cortical network. In addition to auditory processing systems, networks consisting of frontal and parietal regions are particularly disturbed. For this reason, some authors conceptualize tinnitus as a network disorder rather than a disorder of a circumscribed system. These findings and this concept suggest that tinnitus must be diagnosed and treated in a multidisciplinary and multimodal manner.


Asunto(s)
Acúfeno , Humanos , Acúfeno/diagnóstico , Acúfeno/etiología , Acúfeno/terapia , Ruido
13.
Neuroimage ; 258: 119373, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35700947

RESUMEN

Brain oscillations are considered to play a pivotal role in neural communication. However, detailed information regarding the typical oscillatory patterns of individual brain regions is surprisingly scarce. In this study we applied a multivariate data-driven approach to create an atlas of the natural frequencies of the resting human brain on a voxel-by-voxel basis. We analysed resting-state magnetoencephalography (MEG) data from 128 healthy adult volunteers obtained from the Open MEG Archive (OMEGA). Spectral power was computed in source space in 500 ms steps for 82 frequency bins logarithmically spaced from 1.7 to 99.5 Hz. We then applied k-means clustering to detect characteristic spectral profiles and to eventually identify the natural frequency of each voxel. Our results provided empirical confirmation of the canonical frequency bands and revealed a region-specific organisation of intrinsic oscillatory activity, following both a medial-to-lateral and a posterior-to-anterior gradient of increasing frequency. In particular, medial fronto-temporal regions were characterised by slow rhythms (delta/theta). Posterior regions presented natural frequencies in the alpha band, although with differentiated generators in the precuneus and in sensory-specific cortices (i.e., visual and auditory). Somatomotor regions were distinguished by the mu rhythm, while the lateral prefrontal cortex was characterised by oscillations in the high beta range (>20 Hz). Importantly, the brain map of natural frequencies was highly replicable in two independent subsamples of individuals. To the best of our knowledge, this is the most comprehensive atlas of ongoing oscillatory activity performed to date. Critically, the identification of natural frequencies is a fundamental step towards a better understanding of the functional architecture of the human brain.


Asunto(s)
Magnetoencefalografía , Descanso , Adulto , Encéfalo , Mapeo Encefálico/métodos , Humanos , Magnetoencefalografía/métodos , Lóbulo Temporal
14.
Neuroimage ; 258: 119395, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35718023

RESUMEN

The systematic alignment of low-frequency brain oscillations with the acoustic speech envelope signal is well established and has been proposed to be crucial for actively perceiving speech. Previous studies investigating speech-brain coupling in source space are restricted to univariate pairwise approaches between brain and speech signals, and therefore speech tracking information in frequency-specific communication channels might be lacking. To address this, we propose a novel multivariate framework for estimating speech-brain coupling where neural variability from source-derived activity is taken into account along with the rate of envelope's amplitude change (derivative). We applied it in magnetoencephalographic (MEG) recordings while human participants (male and female) listened to one hour of continuous naturalistic speech, showing that a multivariate approach outperforms the corresponding univariate method in low- and high frequencies across frontal, motor, and temporal areas. Systematic comparisons revealed that the gain in low frequencies (0.6 - 0.8 Hz) was related to the envelope's rate of change whereas in higher frequencies (from 0.8 to 10 Hz) it was mostly related to the increased neural variability from source-derived cortical areas. Furthermore, following a non-negative matrix factorization approach we found distinct speech-brain components across time and cortical space related to speech processing. We confirm that speech envelope tracking operates mainly in two timescales (δ and θ frequency bands) and we extend those findings showing shorter coupling delays in auditory-related components and longer delays in higher-association frontal and motor components, indicating temporal differences of speech tracking and providing implications for hierarchical stimulus-driven speech processing.


Asunto(s)
Corteza Auditiva , Percepción del Habla , Estimulación Acústica , Femenino , Humanos , Magnetoencefalografía , Masculino , Análisis Multivariante , Habla
15.
Neuroimage ; 253: 119077, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35278708

RESUMEN

Phonological difficulties characterize individuals with dyslexia across languages. Currently debated is whether these difficulties arise from atypical neural sampling of (or entrainment to) auditory information in speech at slow rates (<10 Hz, related to speech rhythm), faster rates, or neither. MEG studies with adults suggest that atypical sampling in dyslexia affects faster modulations in the neurophysiological gamma band, related to phoneme-level representation. However, dyslexic adults have had years of reduced experience in converting graphemes to phonemes, which could itself cause atypical gamma-band activity. The present study was designed to identify specific linguistic timescales at which English children with dyslexia may show atypical entrainment. Adopting a developmental focus, we hypothesized that children with dyslexia would show atypical entrainment to the prosodic and syllable-level information that is exaggerated in infant-directed speech and carried primarily by amplitude modulations <10 Hz. MEG was recorded in a naturalistic story-listening paradigm. The modulation bands related to different types of linguistic information were derived directly from the speech materials, and lagged coherence at multiple temporal rates spanning 0.9-40 Hz was computed. Group differences in lagged speech-brain coherence between children with dyslexia and control children were most marked in neurophysiological bands corresponding to stress and syllable-level information (<5 Hz in our materials), and phoneme-level information (12-40 Hz). Functional connectivity analyses showed network differences between groups in both hemispheres, with dyslexic children showing significantly reduced global network efficiency. Global network efficiency correlated with dyslexic children's oral language development and with control children's reading development. These developmental data suggest that dyslexia is characterized by atypical neural sampling of auditory information at slower rates. They also throw new light on the nature of the gamma band temporal sampling differences reported in MEG dyslexia studies with adults.


Asunto(s)
Dislexia , Percepción del Habla , Adulto , Niño , Humanos , Lenguaje , Lectura , Habla , Percepción del Habla/fisiología
16.
Eur Arch Psychiatry Clin Neurosci ; 272(3): 437-448, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34401957

RESUMEN

Schizophrenia is characterised by cognitive impairments that are already present during early stages, including in the clinical high-risk for psychosis (CHR-P) state and first-episode psychosis (FEP). Moreover, data suggest the presence of distinct cognitive subtypes during early-stage psychosis, with evidence for spared vs. impaired cognitive profiles that may be differentially associated with symptomatic and functional outcomes. Using cluster analysis, we sought to determine whether cognitive subgroups were associated with clinical and functional outcomes in CHR-P individuals. Data were available for 146 CHR-P participants of whom 122 completed a 6- and/or 12-month follow-up; 15 FEP participants; 47 participants not fulfilling CHR-P criteria (CHR-Ns); and 53 healthy controls (HCs). We performed hierarchical cluster analysis on principal components derived from neurocognitive and social cognitive measures. Within the CHR-P group, clusters were compared on clinical and functional variables and examined for associations with global functioning, persistent attenuated psychotic symptoms and transition to psychosis. Two discrete cognitive subgroups emerged across all participants: 45.9% of CHR-P individuals were cognitively impaired compared to 93.3% of FEP, 29.8% of CHR-N and 30.2% of HC participants. Cognitively impaired CHR-P participants also had significantly poorer functioning at baseline and follow-up than their cognitively spared counterparts. Specifically, cluster membership predicted functional but not clinical outcome. Our findings support the existence of distinct cognitive subgroups in CHR-P individuals that are associated with functional outcomes, with implications for early intervention and the understanding of underlying developmental processes.


Asunto(s)
Disfunción Cognitiva , Trastornos Psicóticos , Esquizofrenia , Análisis por Conglomerados , Cognición , Disfunción Cognitiva/etiología , Humanos , Esquizofrenia/complicaciones , Esquizofrenia/diagnóstico
17.
J Chem Phys ; 156(10): 104504, 2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35291787

RESUMEN

It is generally not straightforward to apply molecular-thermodynamic theories to fluids with short-ranged attractive forces between their constituent molecules (or particles). This especially applies to perturbation theories, which, for short-ranged attractive fluids, typically must be extended to high order or may not converge at all. Here, we show that a recent first-order perturbation theory, the uv-theory, holds promise for describing such fluids. As a case study, we apply the uv-theory to a fluid with pair interactions defined by the Lennard-Jones spline potential, which is a short-ranged version of the LJ potential that is known to provide a challenge for equation-of-state development. The results of the uv-theory are compared to those of third-order Barker-Henderson and fourth-order Weeks-Chandler-Andersen perturbation theories, which are implemented using Monte Carlo simulation results for the respective perturbation terms. Theoretical predictions are compared to an extensive dataset of molecular simulation results from this (and previous) work, including vapor-liquid equilibria, first- and second-order derivative properties, the critical region, and metastable states. The uv-theory proves superior for all properties examined. An especially accurate description of metastable vapor and liquid states is obtained, which might prove valuable for future applications of the equation-of-state model to inhomogeneous phases or nucleation processes. Although the uv-theory is analytic, it accurately describes molecular simulation results for both the critical point and the binodal up to at least 99% of the critical temperature. This suggests that the difficulties typically encountered in describing the vapor-liquid critical region are only to a small extent caused by non-analyticity.

18.
Neuroimage ; 245: 118660, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34715317

RESUMEN

Analyses of cerebro-peripheral connectivity aim to quantify ongoing coupling between brain activity (measured by MEG/EEG) and peripheral signals such as muscle activity, continuous speech, or physiological rhythms (such as pupil dilation or respiration). Due to the distinct rhythmicity of these signals, undirected connectivity is typically assessed in the frequency domain. This leaves the investigator with two critical choices, namely a) the appropriate measure for spectral estimation (i.e., the transformation into the frequency domain) and b) the actual connectivity measure. As there is no consensus regarding best practice, a wide variety of methods has been applied. Here we systematically compare combinations of six standard spectral estimation methods (comprising fast Fourier and continuous wavelet transformation, bandpass filtering, and short-time Fourier transformation) and six connectivity measures (phase-locking value, Gaussian-Copula mutual information, Rayleigh test, weighted pairwise phase consistency, magnitude squared coherence, and entropy). We provide performance measures of each combination for simulated data (with precise control over true connectivity), a single-subject set of real MEG data, and a full group analysis of real MEG data. Our results show that, overall, WPPC and GCMI tend to outperform other connectivity measures, while entropy was the only measure sensitive to bimodal deviations from a uniform phase distribution. For group analysis, choosing the appropriate spectral estimation method appears to be more critical than the connectivity measure. We discuss practical implications (sampling rate, SNR, computation time, and data length) and aim to provide recommendations tailored to particular research questions.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/fisiología , Vías Nerviosas/fisiología , Algoritmos , Simulación por Computador , Electroencefalografía , Entropía , Humanos , Magnetoencefalografía/métodos , Modelos Neurológicos , Distribución Normal , Procesamiento de Señales Asistido por Computador , Análisis de Ondículas
19.
Hum Brain Mapp ; 42(2): 427-438, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33068056

RESUMEN

Pharyngolaryngeal hypesthesia is a major reason for dysphagia in various neurological diseases. Emerging neuromodulation devices have shown potential to foster dysphagia rehabilitation, but the optimal treatment strategy is unknown. Because functional imaging studies are difficult to conduct in severely ill patients, we induced a virtual sensory lesion in healthy volunteers and evaluated the effects of central and peripheral neurostimulation techniques. In a sham-controlled intervention study with crossover design on 10 participants, we tested the potential of (peripheral) pharyngeal electrical stimulation (PES) and (central) transcranial direct current stimulation (tDCS) to revert the effects of lidocaine-induced pharyngolaryngeal hypesthesia on central sensorimotor processing. Changes were observed during pharyngeal air-pulse stimulation and voluntary swallowing applying magnetoencephalography before and after the interventions. PES induced a significant (p < .05) increase of activation during swallowing in the bihemispheric sensorimotor network in alpha and low gamma frequency ranges, peaking in the right premotor and left primary sensory area, respectively. With pneumatic stimulation, significant activation increase was found after PES in high gamma peaking in the left premotor area. Significant changes of brain activation after tDCS could neither be detected for pneumatic stimulation nor for swallowing. Due to the peripheral cause of dysphagia in this model, PES was able to revert the detrimental effects of reduced sensory input on central processing, whereas tDCS was not. Results may have implications for therapeutic decisions in the clinical context.


Asunto(s)
Deglución/fisiología , Retroalimentación Sensorial/fisiología , Hipoestesia/fisiopatología , Laringe/fisiopatología , Faringe/fisiopatología , Estimulación Transcraneal de Corriente Directa/métodos , Adulto , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Estudios Cruzados , Estimulación Eléctrica/métodos , Femenino , Humanos , Hipoestesia/diagnóstico por imagen , Magnetoencefalografía/métodos , Masculino , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiopatología , Adulto Joven
20.
PLoS Biol ; 16(3): e2004473, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29529019

RESUMEN

During online speech processing, our brain tracks the acoustic fluctuations in speech at different timescales. Previous research has focused on generic timescales (for example, delta or theta bands) that are assumed to map onto linguistic features such as prosody or syllables. However, given the high intersubject variability in speaking patterns, such a generic association between the timescales of brain activity and speech properties can be ambiguous. Here, we analyse speech tracking in source-localised magnetoencephalographic data by directly focusing on timescales extracted from statistical regularities in our speech material. This revealed widespread significant tracking at the timescales of phrases (0.6-1.3 Hz), words (1.8-3 Hz), syllables (2.8-4.8 Hz), and phonemes (8-12.4 Hz). Importantly, when examining its perceptual relevance, we found stronger tracking for correctly comprehended trials in the left premotor (PM) cortex at the phrasal scale as well as in left middle temporal cortex at the word scale. Control analyses using generic bands confirmed that these effects were specific to the speech regularities in our stimuli. Furthermore, we found that the phase at the phrasal timescale coupled to power at beta frequency (13-30 Hz) in motor areas. This cross-frequency coupling presumably reflects top-down temporal prediction in ongoing speech perception. Together, our results reveal specific functional and perceptually relevant roles of distinct tracking and cross-frequency processes along the auditory-motor pathway.


Asunto(s)
Corteza Auditiva/fisiología , Corteza Motora/fisiología , Percepción del Habla , Habla , Estimulación Acústica , Adolescente , Adulto , Mapeo Encefálico , Femenino , Humanos , Magnetoencefalografía , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA