Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cytotherapy ; 25(5): 490-501, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36781360

RESUMEN

B-cell maturation antigen (BCMA) is a clinically validated target for multiple myeloma. T-cell engineered with chimeric antigen receptors (CARs) directed against BCMA have demonstrated robust therapeutic activity in clinical trials, but toxicities remain a significant concern for a subset of patients, supporting continued investigation of other engineered T-cell platforms that may offer equal efficacy with an improved toxicity profile. The authors recently described a BCMA-specific, T-cell-centric synthetic antigen receptor, the T-cell antigen coupler (TAC) receptor, that can be used to engineer T-cell with robust anti-myeloma activity. Here the authors describe the creation of a fully humanized BCMA-specific TAC receptor. Single-chain variable fragments (scFvs) were developed from BCMA-specific F(ab)s that were identified in a fully human phage display library. Twenty-four configurations of the F(ab)s were evaluated in a medium-throughput screening using primary T-cell, and a single F(ab), TRAC 3625, emerged as the most robust following in vitro and in vivo evaluation. An optimized BCMA-specific TAC receptor was developed through iterations of the BCMA-TAC design that evaluated a next-generation TAC scaffold sequence, different domains connecting the TAC to the 3625 scFv and different orientations of the TRAC 3625 heavy and light variable regions.


Asunto(s)
Mieloma Múltiple , Linfocitos T , Humanos , Mieloma Múltiple/terapia , Antígeno de Maduración de Linfocitos B , Inmunoterapia Adoptiva , Receptores de Antígenos de Linfocitos T
2.
Nat Methods ; 11(5): 585-92, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24658140

RESUMEN

Cell signaling, one of key processes in both normal cellular function and disease, is coordinated by numerous interactions between membrane proteins that change in response to stimuli. We present a split ubiquitin-based method for detection of integral membrane protein-protein interactions (PPIs) in human cells, termed mammalian-membrane two-hybrid assay (MaMTH). We show that this technology detects stimulus (hormone or agonist)-dependent and phosphorylation-dependent PPIs. MaMTH can detect changes in PPIs conferred by mutations such as those in oncogenic ErbB receptor variants or by treatment with drugs such as the tyrosine kinase inhibitor erlotinib. Using MaMTH as a screening assay, we identified CRKII as an interactor of oncogenic EGFR(L858R) and showed that CRKII promotes persistent activation of aberrant signaling in non-small cell lung cancer cells. MaMTH is a powerful tool for investigating the dynamic interactomes of human integral membrane proteins.


Asunto(s)
Membrana Celular/metabolismo , Mapeo de Interacción de Proteínas/métodos , Técnicas del Sistema de Dos Híbridos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Supervivencia Celular , Citosol/metabolismo , Receptores ErbB/metabolismo , Células HEK293 , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Neoplasias Pulmonares/metabolismo , Proteínas de la Membrana/metabolismo , Microscopía Fluorescente , Mutación , Fosforilación , Fosfotirosina/química , Plásmidos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Transducción de Señal , Biología de Sistemas/métodos , Factores de Transcripción/química , Ubiquitina/química
3.
Nature ; 460(7252): 220-4, 2009 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-19536156

RESUMEN

Natural habitats of some microorganisms may fluctuate erratically, whereas others, which are more predictable, offer the opportunity to prepare in advance for the next environmental change. In analogy to classical Pavlovian conditioning, microorganisms may have evolved to anticipate environmental stimuli by adapting to their temporal order of appearance. Here we present evidence for environmental change anticipation in two model microorganisms, Escherichia coli and Saccharomyces cerevisiae. We show that anticipation is an adaptive trait, because pre-exposure to the stimulus that typically appears early in the ecology improves the organism's fitness when encountered with a second stimulus. Additionally, we observe loss of the conditioned response in E. coli strains that were repeatedly exposed in a laboratory evolution experiment only to the first stimulus. Focusing on the molecular level reveals that the natural temporal order of stimuli is embedded in the wiring of the regulatory network-early stimuli pre-induce genes that would be needed for later ones, yet later stimuli only induce genes needed to cope with them. Our work indicates that environmental anticipation is an adaptive trait that was repeatedly selected for during evolution and thus may be ubiquitous in biology.


Asunto(s)
Adaptación Fisiológica , Evolución Biológica , Ambiente , Escherichia coli/metabolismo , Saccharomyces cerevisiae/metabolismo , Metabolismo de los Hidratos de Carbono , Carbono/metabolismo , Respiración de la Célula , Escherichia coli/genética , Fermentación , Regulación de la Expresión Génica , Genómica , Respuesta al Choque Térmico/genética , Lactosa/metabolismo , Maltosa/metabolismo , Presión Osmótica , Estrés Oxidativo/genética , Saccharomyces cerevisiae/genética , Factores de Tiempo
4.
J Biol Chem ; 288(4): 2167-78, 2013 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-23233672

RESUMEN

Studies of misfolded protein targeting to endoplasmic reticulum-associated degradation (ERAD) have largely focused on glycoproteins, which include the bulk of the secretory proteins. Mechanisms of targeting of nonglycosylated proteins are less clear. Here, we studied three nonglycosylated proteins and analyzed their use of known glycoprotein quality control and ERAD components. Similar to an established glycosylated ERAD substrate, the uncleaved precursor of asialoglycoprotein receptor H2a, its nonglycosylated mutant, makes use of calnexin, EDEM1, and HRD1, but only glycosylated H2a is a substrate for the cytosolic SCF(Fbs2) E3 ubiquitin ligase with lectin activity. Two nonglycosylated BiP substrates, NS-1κ light chain and truncated Igγ heavy chain, interact with the ERAD complex lectins OS-9 and XTP3-B and require EDEM1 for degradation. EDEM1 associates through a region outside of its mannosidase-like domain with the nonglycosylated proteins. Similar to glycosylated substrates, proteasomal inhibition induced accumulation of the nonglycosylated proteins and ERAD machinery in the endoplasmic reticulum-derived quality control compartment. Our results suggest a shared ERAD pathway for glycosylated and nonglycosylated proteins composed of luminal lectin machinery components also capable of protein-protein interactions.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico , Retículo Endoplásmico/metabolismo , Regulación de la Expresión Génica , Proteínas de la Membrana/metabolismo , Animales , Chaperoninas/química , Citosol/metabolismo , Glicosilación , Células HEK293 , Humanos , Cadenas kappa de Inmunoglobulina/química , Lectinas/química , Manosidasas/química , Ratones , Células 3T3 NIH , Polisacáridos/química , Desnaturalización Proteica , Pliegue de Proteína
5.
PLoS Genet ; 7(9): e1002273, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21931566

RESUMEN

Transcriptome dynamics is governed by two opposing processes, mRNA production and degradation. Recent studies found that changes in these processes are frequently coordinated and that the relationship between them shapes transcriptome kinetics. Specifically, when transcription changes are counter-acted with changes in mRNA stability, transient fast-relaxing transcriptome kinetics is observed. A possible molecular mechanism underlying such coordinated regulation might lay in two RNA polymerase (Pol II) subunits, Rpb4 and Rpb7, which are recruited to mRNAs during transcription and later affect their degradation in the cytoplasm. Here we used a yeast strain carrying a mutant Pol II which poorly recruits these subunits. We show that this mutant strain is impaired in its ability to modulate mRNA stability in response to stress. The normal negative coordinated regulation is lost in the mutant, resulting in abnormal transcriptome profiles both with respect to magnitude and kinetics of responses. These results reveal an important role for Pol II, in regulation of both mRNA synthesis and degradation, and also in coordinating between them. We propose a simple model for production-degradation coupling that accounts for our observations. The model shows how a simple manipulation of the rates of co-transcriptional mRNA imprinting by Pol II may govern genome-wide transcriptome kinetics in response to environmental changes.


Asunto(s)
ARN Polimerasa II/fisiología , ARN Mensajero/biosíntesis , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/genética , Transcriptoma , ARN Polimerasas Dirigidas por ADN/genética , Genoma Fúngico , Peróxido de Hidrógeno/toxicidad , Cinética , ARN Polimerasa II/genética , Estabilidad del ARN/genética , ARN Mensajero/genética , Proteínas de Saccharomyces cerevisiae/genética , Estrés Fisiológico/genética , Transcripción Genética
6.
J Biol Chem ; 286(2): 1292-300, 2011 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-21062743

RESUMEN

Although the trimming of α1,2-mannose residues from precursor N-linked oligosaccharides is an essential step in the delivery of misfolded glycoproteins to endoplasmic reticulum (ER)-associated degradation (ERAD), the exact role of this trimming is unclear. EDEM1 was initially suggested to bind N-glycans after mannose trimming, a role presently ascribed to the lectins OS9 and XTP3-B, because of their in vitro affinities for trimmed oligosaccharides. We have shown before that ER mannosidase I (ERManI) is required for the trimming and concentrates together with the ERAD substrate and ERAD machinery in the pericentriolar ER-derived quality control compartment (ERQC). Inhibition of mannose trimming prevents substrate accumulation in the ERQC. Here, we show that the mannosidase inhibitor kifunensine or ERManI knockdown do not affect binding of an ERAD substrate glycoprotein to EDEM1. In contrast, substrate association with XTP3-B and with the E3 ubiquitin ligases HRD1 and SCF(Fbs2) was inhibited. Consistently, whereas the ERAD substrate partially colocalized upon proteasomal inhibition with EDEM1, HRD1, and Fbs2 at the ERQC, colocalization was repressed by mannosidase inhibition in the case of the E3 ligases but not for EDEM1. Interestingly, association and colocalization of the substrate with Derlin-1 was independent of mannose trimming. The HRD1 adaptor protein SEL1L had been suggested to play a role in N-glycan-dependent substrate delivery to OS9 and XTP3-B. However, substrate association with XTP3-B was still dependent on mannose trimming upon SEL1L knockdown. Our results suggest that mannose trimming enables delivery of a substrate glycoprotein from EDEM1 to late ERAD steps through association with XTP3-B.


Asunto(s)
Retículo Endoplásmico/metabolismo , Glicoproteínas/metabolismo , Lectinas/metabolismo , Manosa/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Glicoproteínas/química , Glicosilación , Células HEK293 , Humanos , Lectinas/química , Manosidasas/metabolismo , Proteínas de la Membrana/química , Ratones , Células 3T3 NIH , Proteínas de Neoplasias/metabolismo , Pliegue de Proteína , Ubiquitina-Proteína Ligasas/metabolismo
7.
J Mol Biol ; 334(1): 87-101, 2003 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-14596802

RESUMEN

A method for the discovery of the structure of conformational discontinuous epitopes of monoclonal antibodies (mAbs) is described. The mAb is used to select specific phages from combinatorial phage-display peptide libraries that in turn are used as an epitope-defining database that is applied via a novel computer algorithm to analyze the crystalline structure of the original antigen. The algorithm is based on the following: (1) Most contacts between a mAb and an antigen are through side-chain atoms of the residues. (2) In the three-dimensional structure of a protein, amino acid residues remote in linear sequence can juxtapose to one another through folding. (3) Tandem amino acid residues of the selected phage-displayed peptides can represent pairs of juxtaposed amino acid residues of the antigen. (4) Contact residues of the epitope are accessible to the antigen surface. (5) The most frequent tandem pairs of amino acid residues in the selected phage-displayed peptides can reflect pairs of juxtaposed amino acid residues of the epitope. Application of the algorithm enabled prediction of epitopes. On the basis of these predictions, segments of an antigen were used to reconstitute an antigenic epitope mimetic that was recognized by its original mAb.


Asunto(s)
Linfocitos B/inmunología , Epítopos , VIH-1/química , VIH-1/inmunología , Conformación Proteica , Algoritmos , Secuencia de Aminoácidos , Aminoácidos/química , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/metabolismo , Humanos , Modelos Moleculares , Biblioteca de Péptidos
8.
Mol Biol Cell ; 22(21): 3945-54, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21917589

RESUMEN

Trimming of mannose residues from the N-linked oligosaccharide precursor is a stringent requirement for glycoprotein endoplasmic reticulum (ER)-associated degradation (ERAD). In this paper, we show that, surprisingly, overexpression of ER degradation-enhancing α-mannosidase-like protein 1 (EDEM1) or its up-regulation by IRE1, as occurs in the unfolded protein response, overrides this requirement and renders unnecessary the expression of ER mannosidase I. An EDEM1 deletion mutant lacking most of the carbohydrate-recognition domain also accelerated ERAD, delivering the substrate to XTP3-B and OS9. EDEM1 overexpression also accelerated the degradation of a mutant nonglycosylated substrate. Upon proteasomal inhibition, EDEM1 concentrated together with the ERAD substrate in the pericentriolar ER-derived quality control compartment (ERQC), where ER mannosidase I and ERAD machinery components are localized, including, as we show here, OS9. We suggest that a nascent glycoprotein can normally dissociate from EDEM1 and be rescued from ERAD by reentering calnexin-refolding cycles, a condition terminated by mannose trimming. At high EDEM1 levels, glycoprotein release is prevented and glycan interactions are no longer required, canceling the otherwise mandatory ERAD timing by mannose trimming and accelerating the targeting to degradation.


Asunto(s)
Receptor de Asialoglicoproteína/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Transporte de Proteínas , Proteolisis , Animales , Sitios de Unión , Endorribonucleasas/metabolismo , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Lectinas/metabolismo , Manosa/metabolismo , Manosidasas/metabolismo , Proteínas de la Membrana/genética , Ratones , Células 3T3 NIH , Proteínas de Neoplasias/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína , Interferencia de ARN , Respuesta de Proteína Desplegada , Regulación hacia Arriba
9.
Exp Cell Res ; 313(16): 3395-407, 2007 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-17707796

RESUMEN

Accumulation of misfolded proteins in the endoplasmic reticulum (ER) activates the ER membrane kinases PERK and IRE1 leading to the unfolded protein response (UPR). We show here that UPR activation triggers PERK and IRE1 segregation from BiP and their sorting with misfolded proteins to the ER-derived quality control compartment (ERQC), a pericentriolar compartment that we had identified previously. PERK phosphorylates translation factor eIF2alpha, which then accumulates on the cytosolic side of the ERQC. Dominant negative PERK or eIF2alpha(S51A) mutants prevent the compartmentalization, whereas eIF2alpha(S51D) mutant, which mimics constitutive phosphorylation, promotes it. This suggests a feedback loop where eIF2alpha phosphorylation causes pericentriolar concentration at the ERQC, which in turn amplifies the UPR. ER-associated degradation (ERAD) is an UPR-dependent process; we also find that ERAD components (Sec61beta, HRD1, p97/VCP, ubiquitin) are recruited to the ERQC, making it a likely site for retrotranslocation. In addition, we show that autophagy, suggested to play a role in elimination of aggregated proteins, is unrelated to protein accumulation in the ERQC.


Asunto(s)
Compartimento Celular , Retículo Endoplásmico/enzimología , Retículo Endoplásmico/patología , Pliegue de Proteína , eIF-2 Quinasa/metabolismo , Animales , Autofagia/efectos de los fármacos , Compartimento Celular/efectos de los fármacos , Centriolos/efectos de los fármacos , Centriolos/metabolismo , Citosol/efectos de los fármacos , Citosol/metabolismo , Perros , Retículo Endoplásmico/efectos de los fármacos , Factor 2 Eucariótico de Iniciación/metabolismo , Humanos , Leupeptinas/farmacología , Ratones , Modelos Biológicos , Chaperonas Moleculares/metabolismo , Células 3T3 NIH , Fosforilación/efectos de los fármacos , Inhibidores de Proteasoma , Transporte de Proteínas/efectos de los fármacos , Ratas , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA