Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 60(3): 1915-1921, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33475356

RESUMEN

Chemical vapor deposition (CVD) of UO2 thin films from in situ reductive decomposition using a U(VI) precursor ([U(OtBu)6]) was performed under applied magnetic fields (up to 1 T). The molecular mechanism responsible for the formation of U(IV) oxide was determined by nuclear magnetic resonance (NMR) analysis of gaseous byproducts revealed a reductive transformation of uranium hexakis-tert-butoxide into urania. Thin films were grown under zero-field and applied magnetic field conditions that clearly showed the guiding influence of the magnetic field on altering the morphology and crystallographic orientation of grains in UO2 deposits produced under an external magnetic field. Application of magnetic fields was found to reduce the grain size. Whereas films with a ⟨111⟩ preferred orientation were observed under zero-field conditions, the application of magnetic fields (500 mT to 1 T) promoted a polycrystalline growth. X-ray photoelectron spectroscopy confirmed the formation of UO2 films with traces of U(VI) centers present on the surface, which was evidently due to the surface oxidation of coordinatively unsaturated U(IV) centers, which was found to be significantly reduced in the field-assisted process. These findings emphasize the positive effect of magnetic fields on controlling the texture and chemical homogeneity of CVD-grown films. The availability of a magnetic field as an extrinsic parameter for the CVD process adds to the conventional parameters, such as temperature, deposition time, and pressure, and expands the experimental space for thin-film growth.

2.
Nanotechnology ; 32(46)2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34348241

RESUMEN

The catalytic conversion of nitrogen to ammonia remains an energy-intensive process, demanding advanced concepts for nitrogen fixation. The major obstacle of nitrogen fixation lies in the intrinsically high bond energy (941 kJ mol-1) of the N≡N molecule and the absence of a permanent dipole in N2. This kinetic barrier is addressed in this study by an efficient piezo-enhanced gold catalysis as demonstrated by the room temperature reduction of dinitrogen into ammonia. Au nanostructures were immobilized on thin film piezoelectric support of potassium sodium niobate (K0.5Na0.5NbO3, KNN) by chemical vapor deposition of a new Au(III) precursor [Me2Au(PyTFP)(H2O)]1(PyTFP = (Z)-3,3,3-trifluoro-1-(pyridin-2-yl)-prop-1-en-2-olate) that exhibited high volatility (60 °C, 10-3mbar) and clean decomposition mechanism to produce well adherent elemental gold films on KNN and Ti substrates. The gold-functionalized KNN films served as an efficient catalytic system for ammonia production with a Faradaic efficiency of 18.9% achieved upon ultrasonic actuation. Our results show that the spontaneous polarization of piezoelectric materials under external electrical fields augments the sluggish electron transfer kinetics by creating instant dipoles in adsorbed N2molecules to deliver a piezo-enhanced catalytic system promising for sustained activation of dinitrogen molecules.

3.
Sci Rep ; 12(1): 10241, 2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35715528

RESUMEN

The promise of hybrid organic-inorganic halide perovskite solar cells rests on their exceptional power conversion efficiency routinely exceeding 25% in laboratory scale devices. While the migration of halide ions in perovskite thin films has been extensively investigated, the understanding of cation diffusion remains elusive. In this study, a thermal migration of A­site cations at the solid-solid interface, formed by two physically paired MAPbI3 and FAPbI3 perovskite thin films casted on FTO, is demonstrated through continuous annealing at comparably low temperature (100 °C). Diffusion of methylammonium (CH3NH3+, MA+) cations into the low­symmetry yellow δ­FAPbI3 phase triggers a transition from the yellow (δ) to black (α) phase evident in the distinctive color change and verified by shifts in absorption bands and X­ray diffraction patterns. Intermixing of the A­site cations MA+ and FA+ (CH(NH2)2+) occurred for both systems, α­MAPbI3/δ­FAPbI3 and α­MAPbI3/α­FAPbI3. The structural and compositional changes in both cases support a thermally activated ion drift unambiguously demonstrated through changes in the absorption and X-ray photoelectron spectra. Moreover, the physical contact annealing (PCA) leads to healing of defects and pinholes in α­MAPbI3 thin films, which was correlated to longer recombination lifetimes in mixed MAxFA1-xPbI3 thin films obtained after PCA and probed by ultrafast transient absorption spectroscopy.

4.
Dalton Trans ; 50(36): 12365-12385, 2021 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-34318836

RESUMEN

The interest in transition metal dichalcogenides (TMDCs; MEy/2; M = transition metal; E = chalcogenide, y = valence of the metal) has grown exponentially across various science and engineering disciplines due to their unique structural chemistry manifested in a two-dimensional lattice that results in extraordinary electronic and transport properties desired for applications in sensors, energy storage and optoelectronic devices. Since the properties of TMDCs can be tailored by changing the stacking sequence of 2D monolayers with similar or dis-similar materials, a number of synthetic routes essentially based on the disintegration of bulk (e.g., chemical exfoliation) or the integration of atomic constituents (e.g., vapor phase growth) have been explored. Despite a large body of data available on the chemical synthesis of TMDCs, experimental strategies with high repeatability of control over film thickness, phase and compositional purity remain elusive, which calls for innovative synthetic concepts offering, for instance, self-limited growth in the z-direction and homogeneous lateral topography. This review summarizes the recent conceptual advancements in the growth of layered van der Waals TMDCs from both mixtures of metal and chalcogen sources (multi-source precursors; MSPs) and from molecular compounds containing metals and chalcogens in one starting material (single-source precursor; SSPs). The critical evaluation of the strengths, limitations and opportunities of MSP and SSP approaches is provided as a guideline for the fabrication of TMDCs from commercial and customized molecular precursors. For example, alternative synthetic pathways using tailored molecular precursors circumvent the challenges of differential nucleation and crystal growth kinetics that are invariably associated with conventional gas phase chemical vapor transport (CVT) and chemical vapor deposition (CVD) of a mixture of components. The aspects of achieving high compositional purity and alternatives to minimize competing reactions or side products are discussed in the context of efficient chemical synthesis of TMDCs. Moreover, a critical analysis of the potential opportunities and existing bottlenecks in the synthesis of TMDCs and their intrinsic properties is provided.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA