RESUMEN
Coordination of lipids within transient receptor potential canonical channels (TRPCs) is essential for their Ca2+ signaling function. Single particle cryo-EM studies identified two lipid interaction sites, designated L1 and L2, which are proposed to accommodate diacylglycerols (DAGs). To explore the role of L1 and L2 in TRPC3 function, we combined structure-guided mutagenesis and electrophysiological recording with molecular dynamics (MD) simulations. MD simulations indicate rapid DAG accumulation within both L1 and L2 upon its availability within the plasma membrane. Electrophysiological experiments using a photoswitchable DAG-probe reveal potentiation of TRPC3 currents during repetitive activation by DAG. Importantly, initial DAG exposure generates a subsequently sensitized channel state that is associated with significantly faster activation kinetics. TRPC3 sensitization is specifically promoted by mutations within L2, with G652A exhibiting sensitization at very low levels of active DAG. We demonstrate the ability of TRPC3 to adopt a closed state conformation that features partial lipidation of L2 sites by DAG and enables fast activation of the channel by the phospholipase C-DAG pathway.
Asunto(s)
Diglicéridos , Canales de Potencial de Receptor Transitorio , Calcio/metabolismo , Diglicéridos/farmacología , Transducción de Señal , Canales Catiónicos TRPC/genética , Canales Catiónicos TRPC/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Fosfolipasas de Tipo C/metabolismoRESUMEN
The epithelial ion channel TRPV6 plays a pivotal role in calcium homeostasis. Channel function is intricately regulated at different stages, involving the lipid phosphatidylinositol-4,5-bisphosphate (PIP2). Given that dysregulation of TRPV6 is associated with various diseases, including different types of cancer, there is a compelling need for its pharmacological targeting. Structural studies provide insights on how TRPV6 is affected by different inhibitors, with some binding to sites else occupied by lipids. These include the small molecule cis-22a, which, however, also binds to and thereby blocks the pore. By combining calcium imaging, electrophysiology and optogenetics, we identified residues within the pore and the lipid binding site that are relevant for regulation by cis-22a and PIP2 in a bidirectional manner. Yet, mutation of the cytosolic pore exit reduced inhibition by cis-22a but preserved sensitivity to PIP2 depletion. Our data underscore allosteric communication between the lipid binding site and the pore and vice versa for most sites along the pore.
Asunto(s)
Calcio , Fosfatidilinositoles , Canales Catiónicos TRPV , Sitios de Unión , Citosol , Fosfatidilinositoles/metabolismo , Canales Catiónicos TRPV/metabolismoRESUMEN
Trimeric intracellular cation (TRIC) channels have been proposed to modulate Ca2+ release from the endoplasmic reticulum (ER) and determine oscillatory Ca2+ signals. Here, we report that TRIC-A-mediated amplitude and frequency modulation of ryanodine receptor 2 (RyR2)-mediated Ca2+ oscillations and inositol 1,4,5-triphosphate receptor (IP3R)-induced cytosolic signals is based on attenuating store-operated Ca2+ entry (SOCE). Further, TRIC-A-dependent delay in ER Ca2+ store refilling contributes to shaping the pattern of Ca2+ oscillations. Upon ER Ca2+ depletion, TRIC-A clusters with stromal interaction molecule 1 (STIM1) and Ca2+-release-activated Ca2+ channel 1 (Orai1) within ER-plasma membrane (PM) junctions and impairs assembly of the STIM1/Orai1 complex, causing a decrease in Orai1-mediated Ca2+ current and SOCE. Together, our findings demonstrate that TRIC-A is a negative regulator of STIM1/Orai1 function. Thus, aberrant SOCE could contribute to muscle disorders associated with loss of TRIC-A.
Asunto(s)
Canales Iónicos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/metabolismo , Molécula de Interacción Estromal 1/metabolismo , Animales , Señalización del Calcio/fisiología , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Células HEK293 , Humanos , Masculino , Ratones Endogámicos C57BL , Complejos Multiproteicos/metabolismo , Proteínas de Neoplasias/genética , Proteína ORAI1/genética , Técnicas de Placa-Clamp , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Molécula de Interacción Estromal 1/genéticaRESUMEN
Nano-junctions between the endoplasmic reticulum and cytoplasmic surfaces of the plasma membrane and other organelles shape the spatiotemporal features of biological Ca2+ signals. Herein, we propose that 2D Ca2+ exchange diffusion on the negatively charged phospholipid surface lining nano-junctions participates in guiding Ca2+ from its source (channel or carrier) to its target (transport protein or enzyme). Evidence provided by in vitro Ca2+ flux experiments using an artificial phospholipid membrane is presented in support of the above proposed concept, and results from stochastic simulations of Ca2+ trajectories within nano-junctions are discussed in order to substantiate its possible requirements. Finally, we analyze recent literature on Ca2+ lipid interactions, which suggests that 2D interfacial Ca2+ diffusion may represent an important mechanism of signal transduction in biological systems characterized by high phospholipid surface to aqueous volume ratios.
Asunto(s)
Señalización del Calcio/fisiología , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Modelos Biológicos , Animales , Difusión , Humanos , Membranas Intracelulares/metabolismoRESUMEN
Canonical members of the TRP superfamily of ion channels have long been recognized as key elements of Ca2+ handling in a plethora of cell types. The emerging role of TRPC channels in human physiopathology has generated considerable interest in their pharmacological targeting, which requires detailed understanding of their molecular function. Although consent has been reached that receptor-phospholipase C (PLC) pathways and generation of lipid mediators constitute the prominent upstream signaling process that governs channel activity, multimodal sensing features of TRPC complexes have been demonstrated repeatedly. Downstream signaling by TRPC channels is similarly complex and involves the generation of local and global cellular Ca2+ rises, which are well-defined in space and time to govern specific cellular functions. These TRPC-mediated Ca2+ signals rely in part on Ca2+ permeation through the channels, but are essentially complemented by secondary mechanisms such as Ca2+ mobilization from storage sites and Na+/Ca2+ exchange, which involve coordinated interaction with signaling partners. Consequently, the control of cell functions by TRPC molecules is critically determined by dynamic assembly and subcellular targeting of the TRPC complexes. The very recent availability of high-resolution structure information on TRPC channel complexes has paved the way towards a comprehensive understanding of signal transduction by TRPC channels. Here, we summarize current concepts of cation permeation in TRPC complexes, TRPC-mediated shaping of cellular Ca2+ signals and the associated control of specific cell functions.
Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Canales Catiónicos TRPC/metabolismo , Animales , HumanosRESUMEN
Transient receptor potential canonical (TRPC) channels TRPC3, TRPC6 and TRPC7 are able to sense the lipid messenger diacylglycerol (DAG). The DAG-sensing and lipid-gating processes in these ion channels are still unknown. To gain insights into the lipid-sensing principle, we generated a DAG photoswitch, OptoDArG, that enabled efficient control of TRPC3 by light. A structure-guided mutagenesis screen of the TRPC3 pore domain unveiled a single glycine residue behind the selectivity filter (G652) that is exposed to lipid through a subunit-joining fenestration. Exchange of G652 with larger residues altered the ability of TRPC3 to discriminate between different DAG molecules. Light-controlled activation-deactivation cycling of TRPC3 channels by an OptoDArG-mediated optical 'lipid clamp' identified pore domain fenestrations as pivotal elements of the channel´s lipid-sensing machinery. We provide evidence for a novel concept of lipid sensing by TRPC channels based on a lateral fenestration in the pore domain that accommodates lipid mediators to control gating.
Asunto(s)
Activación del Canal Iónico , Lípidos/química , Canales Catiónicos TRPC/química , Animales , Calcio/química , Glicina/química , Células HEK293 , Humanos , Cinética , Luz , Mutagénesis , Mutación , Óptica y Fotónica , Fotoquímica , Unión Proteica , Ratas , Transducción de Señal , Canales Catiónicos TRPV/químicaRESUMEN
We investigated the role of Na+/ Ca2+ exchange (NCX) in the refilling of endoplasmic reticulum (ER) Ca2+ in vascular endothelial cells under various conditions of cell stimulation and plasma membrane (PM) polarization. Better understanding of the mechanisms behind basic ER Ca2+ content regulation is important, since current hypotheses on the possible ultimate causes of ER stress point to deterioration of the Ca2+ transport mechanism to/from ER itself. We measured [Ca2+]i temporal changes by Fura-2 fluorescence under experimental protocols that inhibit a host of transporters (NCX, Orai, non-selective transient receptor potential canonical (TRPC) channels, sarco/endoplasmic reticulum Ca2+ ATPase (SERCA), Na+/ K+ ATPase (NKA)) involved in the Ca2+ communication between the extracellular space and the ER. Following histamine-stimulated ER Ca2+ release, blockade of NCX Ca2+-influx mode (by 10 µM KB-R7943) diminished the ER refilling capacity by about 40%, while in Orai1 dominant negative-transfected cells NCX blockade attenuated ER refilling by about 60%. Conversely, inhibiting the ouabain sensitive NKA (10 nM ouabain), which may be localized in PM-ER junctions, increased the ER Ca2+ releasable fraction by about 20%, thereby supporting the hypothesis that this process of privileged ER refilling is junction-mediated. Junctions were observed in the cell ultrastructure and their main parameters of membrane separation and linear extension were (9.6 ± 3.8) nm and (128 ± 63) nm, respectively. Our findings point to a process of privileged refilling of the ER, in which NCX and store-operated Ca2+ entry via the stromal interaction molecule (STIM)-Orai system are the sole protagonists. These results shed light on the molecular machinery involved in the function of a previously hypothesized subplasmalemmal Ca2+ control unit during ER refilling with extracellular Ca2+.
Asunto(s)
Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Células Endoteliales/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Canales de Calcio/metabolismo , Señalización del Calcio/fisiología , Membrana Celular/metabolismo , Humanos , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismoRESUMEN
The discovery of the store-operated Ca2+ entry (SOCE) phenomenon is tightly associated with its recognition as a pathway of high (patho)physiological significance in the cardiovascular system. Early on, SOCE has been investigated primarily in non-excitable cell types, and the vascular endothelium received particular attention, while a role of SOCE in excitable cells, specifically cardiac myocytes and pacemakers, was initially ignored and remains largely enigmatic even to date. With the recent gain in knowledge on the molecular components of SOCE as well as their cellular organization within nanodomains, potential tissue/cell type-dependent heterogeneity of the SOCE machinery along with high specificity of linkage to downstream signaling pathways emerged for cardiovascular cells. The basis of precise decoding of cellular Ca2+ signals was recently uncovered to involve correct spatiotemporal organization of signaling components, and even minor disturbances in these assemblies trigger cardiovascular pathologies. With this chapter, we wish to provide an overview on current concepts of cellular organization of SOCE signaling complexes in cardiovascular cells with particular focus on the spatiotemporal aspects of coupling to downstream signaling and the potential disturbance of these mechanisms by pathogenic factors. The significance of these mechanistic concepts for the development of novel therapeutic strategies will be discussed.
Asunto(s)
Canales de Calcio/metabolismo , Señalización del Calcio/fisiología , Calcio/metabolismo , Enfermedades Cardiovasculares/metabolismo , Trastornos Hemostáticos/metabolismo , Animales , Endotelio Vascular/metabolismo , Humanos , Transducción de Señal/fisiologíaRESUMEN
We set out to determine the membrane potential (Vm) of the endothelial cell line EA.hy926 and its sensitivity to the antimycotic amphotericin B (AmB), a commonly used antifungal component in cell culture media. We measured the endothelial Vm under various experimental conditions by patch clamp technique and found that Vm of AmB-treated cells is (-12.1 ± 9.3) mV, while in AmB-untreated (control) cells it is (-57.1 ± 4.1) mV. In AmB-free extracellular solutions, Vm recovered toward control levels and this gain in Vm rapidly dissipated upon re-addition of AmB, demonstrating a rapid and reversible effect of AmB on endothelial Vm. The consequences of AmB dependent alterations in endothelial transmembrane potential were tested at the levels of Ca(2+) signaling, of nucleotide concentrations, and energy metabolism. In AmB-treated cells we found substantially reduced Ca(2+) entry (to about 60% of that in control cells) in response to histamine induced endoplasmic reticulum (ER) Ca(2+) depletion, and diminished the ATP-to-ADP ratio (by >30%). Our data demonstrate a marked and experimentally relevant dependence of basic functional parameters of cultured endothelial cells on the presence of the ionophoric antimycotic AmB. The profound and reversible effects of the widely used culture media component AmB need careful consideration when interpreting experimental data obtained under respective culture conditions.
Asunto(s)
Anfotericina B/toxicidad , Antifúngicos/toxicidad , Células Endoteliales/efectos de los fármacos , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Señalización del Calcio/efectos de los fármacos , Técnicas de Cultivo de Célula/métodos , Línea Celular , Medios de Cultivo/toxicidad , Células Endoteliales/metabolismo , Humanos , Potenciales de la Membrana/efectos de los fármacos , Técnicas de Placa-ClampRESUMEN
VE-cadherin is the predominant adhesion molecule in vascular endothelial cells being responsible for maintenance of the endothelial barrier function by forming adhesive contacts (adherens junctions) to neighbouring cells. We found by use of single molecule fluorescence microscopy that VE-cadherin is localised in preformed clusters when not inside adherens junctions. These clusters depend on the integrity of the actin cytoskeleton and are localised in cholesterol rich microdomains of mature endothelial cells as found by membrane fractionation. The ability to form and maintain VE-cadherin based junctions was probed using the laser tweezer technique, and we found that cholesterol depletion has dramatical effects on VE-cadherin mediated adhesion. While a 30% reduction of the cholesterol-level results in an increase of adhesion, excessive cholesterol depletion by about 60% leads to an almost complete loss of VE-cadherin function. Nevertheless, the cadherin concentration in the membrane and the single molecule kinetic parameters of the cadherin are not changed. Our results suggest that the actin cytoskeleton, junction-associated proteins and protein-lipid assemblies in cholesterol-rich micro-domains mutually stabilise each other to form functional adhesion contacts.
Asunto(s)
Antígenos CD/metabolismo , Cadherinas/metabolismo , Colesterol/deficiencia , Colesterol/metabolismo , Microdominios de Membrana/metabolismo , Uniones Adherentes/metabolismo , Animales , Western Blotting , Células CHO , Adhesión Celular , Cricetinae , Cricetulus , Perros , Técnica del Anticuerpo Fluorescente , Cinética , Células de Riñón Canino Madin Darby , Microscopía por Video , Pinzas Ópticas , Unión Proteica , Transporte de ProteínasRESUMEN
Stromal interaction molecule (STIM1) and ORAI1 are key components of the Ca(2+) release-activated Ca(2+) (CRAC) current having an important role in T-cell activation and mast cell degranulation. CRAC channel activation occurs via physical interaction of ORAI1 with STIM1 when endoplasmic reticulum Ca(2+) stores are depleted. Here we show, utilizing a novel STIM1-derived Förster resonance energy transfer sensor, that the ORAI1 activating small fragment (OASF) undergoes a C-terminal, intramolecular transition into an extended conformation when activating ORAI1. The C-terminal rearrangement of STIM1 does not require a functional CRAC channel, suggesting interaction with ORAI1 as sufficient for this conformational switch. Extended conformations were also engineered by mutations within the first and third coiled-coil domains in the cytosolic portion of STIM1 revealing the involvement of hydrophobic residues in the intramolecular transition. Corresponding full-length STIM1 mutants exhibited enhanced interaction with ORAI1 inducing constitutive CRAC currents, even in the absence of store depletion. We suggest that these mutant STIM1 proteins imitate a physiological activated state, which mimics the intramolecular transition that occurs in native STIM1 upon store depletion.
Asunto(s)
Canales de Calcio/metabolismo , Señalización del Calcio/fisiología , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Conformación Proteica , Western Blotting , Cromatografía en Gel , Clonación Molecular , Electrofisiología , Transferencia Resonante de Energía de Fluorescencia , Humanos , Proteínas de la Membrana/genética , Microscopía Fluorescente , Mutagénesis Sitio-Dirigida , Proteínas de Neoplasias/genética , Proteína ORAI1 , Molécula de Interacción Estromal 1 , TransfecciónRESUMEN
STIM1 and Orai1 represent the two molecular key components of the Ca(2+) release-activated Ca(2+) channels. Their activation involves STIM1 C terminus coupling to both the N terminus and the C terminus of Orai. Here we focused on the extended transmembrane Orai1 N-terminal (ETON, aa73-90) region, conserved among the Orai family forming an elongated helix of TM1 as recently shown by x-ray crystallography. To identify "hot spot" residues in the ETON binding interface for STIM1 interaction, numerous Orai1 constructs with N-terminal truncations or point mutations within the ETON region were generated. N-terminal truncations of the first four residues of the ETON region or beyond completely abolished STIM1-dependent Orai1 function. Loss of Orai1 function resulted from neither an impairment of plasma membrane targeting nor pore damage, but from a disruption of STIM1 interaction. In a complementary approach, we monitored STIM1-Orai interaction via Orai1 V102A by determining restored Ca(2+) selectivity as a consequence of STIM1 coupling. Orai1 N-terminal truncations that led to a loss of function consistently failed to restore Ca(2+) selectivity of Orai1 V102A in the presence of STIM1, demonstrating impairment of STIM1 binding. Hence, the major portion of the ETON region (aa76-90) is essential for STIM1 binding and Orai1 activation. Mutagenesis within the ETON region revealed several hydrophobic and basic hot spot residues that appear to control STIM1 coupling to Orai1 in a concerted manner. Moreover, we identified two basic residues, which protrude into the elongated pore to redound to Orai1 gating. We suggest that several hot spot residues in the ETON region contribute in aggregate to the binding of STIM1, which in turn is coupled to a conformational reorientation of the gate.
Asunto(s)
Canales de Calcio/química , Canales de Calcio/metabolismo , Activación del Canal Iónico , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Potenciales de Acción , Secuencia de Aminoácidos , Aminoácidos/metabolismo , Sitios de Unión , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Datos de Secuencia Molecular , Proteínas Mutantes/metabolismo , Proteína ORAI1 , Unión Proteica , Estructura Terciaria de Proteína , Eliminación de Secuencia/genética , Molécula de Interacción Estromal 1 , Relación Estructura-ActividadRESUMEN
BACKGROUND: Prolonged intracellular calcium elevation contributes to sensitization of nociceptors and chronic pain in inflammatory conditions. The underlying molecular mechanisms remain unknown but store-operated calcium entry (SOCE) components participate in calcium homeostasis, potentially playing a significant role in chronic pain pathologies. Most G protein-coupled receptors activated by inflammatory mediators trigger calcium-dependent signaling pathways and stimulate SOCE in primary afferents. The aim of the present study was to investigate the role of TRPC3, a calcium-permeable non-selective cation channel coupled to phospholipase C and highly expressed in DRG, as a link between activation of pro-inflammatory metabotropic receptors and SOCE in nociceptive pathways. RESULTS: Using in situ hybridization, we determined that TRPC3 and TRPC1 constitute the major TRPC subunits expressed in adult rat DRG. TRPC3 was found localized exclusively in small and medium diameter sensory neurons. Heterologous overexpression of TRPC3 channel subunits in cultured primary DRG neurons evoked a significant increase of Gd3+-sensitive SOCE following thapsigargin-induced calcium store depletion. Conversely, using the same calcium add-back protocol, knockdown of endogenous TRPC3 with shRNA-mediated interference or pharmacological inhibition with the selective TRPC3 antagonist Pyr10 induced a substantial decrease of SOCE, indicating a significant role of TRPC3 in SOCE in DRG nociceptors. Activation of P2Y2 purinoceptors or PAR2 protease receptors triggered a strong increase in intracellular calcium in conditions of TRPC3 overexpression. Additionally, knockdown of native TRPC3 or its selective pharmacological blockade suppressed UTP- or PAR2 agonist-evoked calcium responses as well as sensitization of DRG neurons. These data show a robust link between activation of pro-inflammatory receptors and calcium homeostasis through TRPC3-containing channels operating both in receptor- and store-operated mode. CONCLUSIONS: Our findings highlight a major contribution of TRPC3 to neuronal calcium homeostasis in somatosensory pathways based on the unique ability of these cation channels to engage in both SOCE and receptor-operated calcium influx. This is the first evidence for TRPC3 as a SOCE component in DRG neurons. The flexible role of TRPC3 in calcium signaling as well as its functional coupling to pro-inflammatory metabotropic receptors involved in peripheral sensitization makes it a potential target for therapeutic strategies in chronic pain conditions.
Asunto(s)
Nociceptores/fisiología , Transducción de Señal/fisiología , Canales Catiónicos TRPC/metabolismo , Animales , Bloqueadores de los Canales de Calcio/farmacología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Ganglios Espinales/citología , Regulación de la Expresión Génica/efectos de los fármacos , Imidazoles/farmacología , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratas , Ratas Sprague-Dawley , Receptores Purinérgicos P2Y2/metabolismo , Transducción de Señal/efectos de los fármacos , Médula Espinal/citología , Canales Catiónicos TRPC/genética , Tapsigargina/farmacología , Factores de Tiempo , Fosfolipasas de Tipo C/metabolismoRESUMEN
Urocortin 2 (Ucn2) is a cardioactive peptide exhibiting beneficial effects in normal and failing heart. In cardiomyocytes, it elicits cAMP- and Ca(2+)-dependent positive inotropic and lusitropic effects. We tested the hypothesis that, in addition, Ucn2 activates cardiac nitric oxide (NO) signaling and elucidated the underlying signaling pathways and mechanisms. In isolated rabbit ventricular myocytes, Ucn2 caused concentration- and time-dependent increases in phosphorylation of Akt (Ser473, Thr308), endothelial NO synthase (eNOS) (Ser1177), and ERK1/2 (Thr202/Tyr204). ERK1/2 phosphorylation, but not Akt and eNOS phosphorylation, was suppressed by inhibition of MEK1/2. Increased Akt phosphorylation resulted in increased Akt kinase activity and was mediated by corticotropin-releasing factor 2 (CRF2) receptors (astressin-2B sensitive). Inhibition of phosphatidylinositol 3-kinase (PI3K) diminished both Akt as well as eNOS phosphorylation mediated by Ucn2. Inhibition of protein kinase A (PKA) reduced Ucn2-induced phosphorylation of eNOS but did not affect the increase in phosphorylation of Akt. Conversely, direct receptor-independent elevation of cAMP via forskolin increased phosphorylation of eNOS but not of Akt. Ucn2 increased intracellular NO concentration ([NO]i), [cGMP], [cAMP], and cell shortening. Inhibition of eNOS suppressed the increases in [NO]i and cell shortening. When both PI3K-Akt and cAMP-PKA signaling were inhibited, the Ucn2-induced increases in [NO]i and cell shortening were attenuated. Thus, in rabbit ventricular myocytes, Ucn2 causes activation of cAMP-PKA, PI3K-Akt, and MEK1/2-ERK1/2 signaling. The MEK1/2-ERK1/2 pathway is not required for stimulation of NO signaling in these cells. The other two pathways, cAMP-PKA and PI3K-Akt, converge on eNOS phosphorylation at Ser1177 and result in pronounced and sustained cellular NO production with subsequent stimulation of cGMP signaling.
Asunto(s)
Ventrículos Cardíacos/metabolismo , Miocitos Cardíacos/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Óxido Nítrico/metabolismo , Urocortinas/metabolismo , Animales , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Ventrículos Cardíacos/citología , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Conejos , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Serina/metabolismo , Transducción de SeñalRESUMEN
TRPC3 represents one of the first identified mammalian relative of the Drosophila trp gene product. Despite extensive biochemical and biophysical characterization as well as ambitious attempts to uncover its physiological role in native cell systems, the channel protein still represents a rather enigmatic member of the TRP superfamily. TRPC3 is significantly expressed in the brain and heart and appears of (patho)physiological importance in both non-excitable and excitable cells, being potentially involved in a wide spectrum of Ca(2+) signaling mechanisms. TRPC3 cation channels display unique gating and regulatory properties that allow for recognition and integration of multiple input stimuli including lipid mediators, cellular Ca(2+) gradients, as well as redox signals. Physiological/pathophysiological functions of this highly versatile cation channel protein are as yet incompletely understood. Its ability to associate in a dynamic manner with a variety of partner proteins enables TRPC3 to serve coordination of multiple downstream signaling pathways and control of divergent cellular functions. Here, we summarize current knowledge on ion channel features as well as possible signaling functions of TRPC3 and discuss the potential biological relevance of this signaling molecule.
Asunto(s)
Canales Catiónicos TRPC/metabolismo , Secuencia de Aminoácidos , Animales , Permeabilidad de la Membrana Celular , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Activación del Canal Iónico , Potenciales de la Membrana , Moduladores del Transporte de Membrana/farmacología , Datos de Secuencia Molecular , Fenotipo , Fosforilación , Conformación Proteica , Procesamiento Proteico-Postraduccional , Relación Estructura-Actividad , Canales Catiónicos TRPC/química , Canales Catiónicos TRPC/efectos de los fármacos , Canales Catiónicos TRPC/genéticaRESUMEN
Cardiac transient receptor potential canonical (TRPC) channels are crucial upstream components of Ca(2+)/calcineurin/nuclear factor of activated T cells (NFAT) signaling, thereby controlling cardiac transcriptional programs. The linkage between TRPC-mediated Ca(2+) signals and NFAT activity is still incompletely understood. TRPC conductances may govern calcineurin activity and NFAT translocation by supplying Ca(2+) either directly through the TRPC pore into a regulatory microdomain or indirectly via promotion of voltage-dependent Ca(2+) entry. Here, we show that a point mutation in the TRPC3 selectivity filter (E630Q), which disrupts Ca(2+) permeability but preserves monovalent permeation, abrogates agonist-induced NFAT signaling in HEK293 cells as well as in murine HL-1 atrial myocytes. The E630Q mutation fully retains the ability to convert phospholipase C-linked stimuli into L-type (Ca(V)1.2) channel-mediated Ca(2+) entry in HL-1 cells, thereby generating a dihydropyridine-sensitive Ca(2+) signal that is isolated from the NFAT pathway. Prevention of PKC-dependent modulation of TRPC3 by either inhibition of cellular kinase activity or mutation of a critical phosphorylation site in TRPC3 (T573A), which disrupts targeting of calcineurin into the channel complex, converts cardiac TRPC3-mediated Ca(2+) signaling into a transcriptionally silent mode. Thus, we demonstrate a dichotomy of TRPC-mediated Ca(2+) signaling in the heart constituting two distinct pathways that are differentially linked to gene transcription. Coupling of TRPC3 activity to NFAT translocation requires microdomain Ca(2+) signaling by PKC-modified TRPC3 complexes. Our results identify TRPC3 as a pivotal signaling gateway in Ca(2+)-dependent control of cardiac gene expression.
Asunto(s)
Calcineurina/metabolismo , Calcio/metabolismo , Miocardio/metabolismo , Proteína Quinasa C/metabolismo , Transducción de Señal , Canales Catiónicos TRPC/metabolismo , Animales , Línea Celular , Humanos , Transporte Iónico , Ratones , Miocardio/citología , Miocardio/enzimología , Factores de Transcripción NFATC/metabolismo , FosforilaciónRESUMEN
Cardiac atrial natriuretic peptide (ANP) regulates arterial blood pressure, moderates cardiomyocyte growth, and stimulates angiogenesis and metabolism. ANP binds to the transmembrane guanylyl cyclase (GC) receptor, GC-A, to exert its diverse functions. This process involves a cGMP-dependent signaling pathway preventing pathological [Ca(2+)](i) increases in myocytes. In chronic cardiac hypertrophy, however, ANP levels are markedly increased and GC-A/cGMP responses to ANP are blunted due to receptor desensitization. Here we show that, in this situation, ANP binding to GC-A stimulates a unique cGMP-independent signaling pathway in cardiac myocytes, resulting in pathologically elevated intracellular Ca(2+) levels. This pathway involves the activation of Ca(2+)-permeable transient receptor potential canonical 3/6 (TRPC3/C6) cation channels by GC-A, which forms a stable complex with TRPC3/C6 channels. Our results indicate that the resulting cation influx activates voltage-dependent L-type Ca(2+) channels and ultimately increases myocyte Ca(2)(+)(i) levels. These observations reveal a dual role of the ANP/GC-A-signaling pathway in the regulation of cardiac myocyte Ca(2+)(i) homeostasis. Under physiological conditions, activation of a cGMP-dependent pathway moderates the Ca(2+)(i)-enhancing action of hypertrophic factors such as angiotensin II. By contrast, a cGMP-independent pathway predominates under pathophysiological conditions when GC-A is desensitized by high ANP levels. The concomitant rise in [Ca(2+)](i) might increase the propensity to cardiac hypertrophy and arrhythmias.
Asunto(s)
Factor Natriurético Atrial/metabolismo , GMP Cíclico/metabolismo , Guanilato Ciclasa/metabolismo , Miocardio/metabolismo , Receptores del Factor Natriurético Atrial/metabolismo , Transducción de Señal , Animales , Línea Celular , Transferencia Resonante de Energía de Fluorescencia , Humanos , RatonesRESUMEN
Spatio-temporal definition of Ca2+ signals involves the assembly of signaling complexes within the nano-architecture of contact sites between the sarco/endoplasmic reticulum (SR/ER) and the plasma membrane (PM). While the requirement of precise spatial assembly and positioning of the junctional signaling elements is well documented, the role of the nano-scale membrane architecture itself, as an ion-reflecting confinement of the signalling unit, remains as yet elusive. Utilizing the Na+/Ca2+ Exchanger-1 / SR/ER Ca2+ ATPase-2-mediated ER Ca2+ refilling process as a junctional signalling paradigm, we provide here the first evidence for an indispensable cellular function of the junctional membrane architecture. Our stochastic modeling approach demonstrates that junctional ER Ca2+ refilling operates exclusively at nano-scale membrane spacing, with a strong inverse relationship between junctional width and signaling efficiency. Our model predicts a breakdown of junctional Ca2+ signaling with loss of reflecting membrane confinement. In addition we consider interactions between Ca2+ and the phospholipid membrane surface, which may support interfacial Ca2+ transport and promote receptor targeting. Alterations in the molecular and nano-scale membrane organization at organelle-PM contacts are suggested as a new concept in pathophysiology.
Asunto(s)
Señalización del Calcio , Calcio , Señalización del Calcio/fisiología , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Membrana Celular/metabolismo , Membranas Mitocondriales/metabolismo , Intercambiador de Sodio-Calcio/metabolismoRESUMEN
The non-selective cation channel TRPC1 is highly expressed in the brain. Recent research shows that neuronal TRPC1 forms heteromeric complexes with TRPC4 and TRPC5, with a small portion existing as homotetramers, primarily in the ER. Given that most studies have focused on the role of heteromeric TRPC1/4/5 complexes, it is crucial to investigate the specific role of homomeric TRPC1 in maintaining brain homeostasis. This review highlights recent findings on TRPC1 in the brain, with a focus on the hippocampus, and compiles the latest data on modulators and their binding sites within the TRPC1/4/5 subfamily to stimulate new research on more selective TRPC1 ligands.
Asunto(s)
Hipocampo , Canales Catiónicos TRPC , Canales Catiónicos TRPC/metabolismo , Hipocampo/metabolismo , Humanos , AnimalesRESUMEN
The transient receptor potential canonical type 3 (TRPC3) channel plays a pivotal role in regulating neuronal excitability in the brain via its constitutive activity. The channel is intricately regulated by lipids and has previously been demonstrated to be positively modulated by PIP2. Using molecular dynamics simulations and patch clamp techniques, we reveal that PIP2 predominantly interacts with TRPC3 at the L3 lipid binding site, located at the intersection of pre-S1 and S1 helices. We demonstrate that PIP2 sensing involves a multistep mechanism that propagates from L3 to the pore domain via a salt bridge between the TRP helix and S4-S5 linker. Notably, we find that both stimulated and constitutive TRPC3 activity require PIP2. These structural insights into the function of TRPC3 are invaluable for understanding the role of the TRPC subfamily in health and disease, in particular for cardiovascular diseases, in which TRPC3 channels play a major role.