Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 300(6): 107330, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38679329

RESUMEN

The cannabinoid type 2 receptor (CB2R), a G protein-coupled receptor, is an important regulator of immune cell function and a promising target to treat chronic inflammation and fibrosis. While CB2R is typically targeted by small molecules, including endo-, phyto-, and synthetic cannabinoids, peptides-owing to their size-may offer a different interaction space to facilitate differential interactions with the receptor. Here, we explore plant-derived cyclic cystine-knot peptides as ligands of the CB2R. Cyclotides are known for their exceptional biochemical stability. Recently, they gained attention as G protein-coupled receptor modulators and as templates for designing peptide ligands with improved pharmacokinetic properties over linear peptides. Cyclotide-based ligands for CB2R were profiled based on a peptide-enriched extract library comprising nine plants. Employing pharmacology-guided fractionation and peptidomics, we identified the cyclotide vodo-C1 from sweet violet (Viola odorata) as a full agonist of CB2R with an affinity (Ki) of 1 µM and a potency (EC50) of 8 µM. Leveraging deep learning networks, we verified the structural topology of vodo-C1 and modeled its molecular volume in comparison to the CB2R ligand binding pocket. In a fragment-based approach, we designed and characterized vodo-C1-based bicyclic peptides (vBCL1-4), aiming to reduce size and improve potency. Opposite to vodo-C1, the vBCL peptides lacked the ability to activate the receptor but acted as negative allosteric modulators or neutral antagonists of CB2R. This study introduces a macrocyclic peptide phytocannabinoid, which served as a template for the development of synthetic CB2R peptide modulators. These findings offer opportunities for future peptide-based probe and drug development at cannabinoid receptors.


Asunto(s)
Receptor Cannabinoide CB2 , Receptor Cannabinoide CB2/metabolismo , Receptor Cannabinoide CB2/agonistas , Receptor Cannabinoide CB2/química , Humanos , Ligandos , Ciclotidas/química , Ciclotidas/farmacología , Células HEK293 , Descubrimiento de Drogas
2.
Planta Med ; 90(7-08): 627-630, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38843800

RESUMEN

Peptides have emerged as key regulators in various physiological processes, including growth, development, stress, and defense responses within plants as well as ecological interactions of plants with microbes and animals. Understanding and harnessing plant peptides can lead to the development of innovative strategies for crop improvement, increasing agricultural productivity, and enhancing resilience to environmental challenges such as drought, pests, and diseases. Moreover, some plant peptides have shown promise in human health applications, with potential therapeutic benefits as ingredients in herbal medicines as well as novel drug leads. The exploration of plant peptides is essential for unraveling the mysteries of plant biology and advancing peptide drug discovery. This short personal commentary provides a very brief overview about the field of plant-derived peptides and a personal word of motivation to increase the number of scientists in pharmacognosy working with these fascinating biomolecules.


Asunto(s)
Productos Biológicos , Descubrimiento de Drogas , Péptidos , Productos Biológicos/farmacología , Productos Biológicos/química , Péptidos/farmacología , Péptidos/química , Humanos , Proteínas de Plantas/química , Plantas/química , Animales
3.
Planta Med ; 89(15): 1493-1504, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37748505

RESUMEN

Viola tricolor is a medicinal plant with documented application as an anti-inflammatory herb. The standard of care for the treatment of inflammatory bowel disease is immunosuppressive therapeutics or biologics, which often have undesired effects. We explored V. tricolor herbal preparations that are rich in an emerging class of phytochemicals with drug-like properties, so-called cyclotides. As an alternative to existing inflammatory bowel disease medications, cyclotides have immunomodulatory properties, and their intrinsic stability allows for application in the gastrointestinal tract, for instance, via oral administration. We optimized the isolation procedure to improve the yield of cyclotides and compared the cellular effects of violet-derived organic solvent-extracts, aqueous preparations, and an isolated cyclotide from this plant on primary human T lymphocytes and macrophages, i.e., cells that are crucial for the initiation and progression of inflammatory bowel disease. The hot water herbal decoctions have a stronger immunosuppressive activity towards proliferation, interferon-γ, and interleukin-21 secretion of primary human T cells than a DCM/MeOH cyclotide-enriched extract, and the isolated cyclotide kalata S appears as one of the active components responsible for the observed effects. This effect was increased by a longer boiling duration. In contrast, the DCM/MeOH cyclotide-enriched extract was more effective in reducing the levels of cytokines interleukin-6, interleukin-12, interleukin-23, tumor necrosis factor-α, and C - X-C motif chemokine ligand 10, secreted by human monocyte-derived macrophages. Defined cyclotide preparations of V. tricolor have promising pharmacological effects in modulating immune cell responses at the cytokine levels. This is important towards understanding the role of cyclotide-containing herbal drug preparations for future applications in immune disorders, such as inflammatory bowel disease.


Asunto(s)
Ciclotidas , Enfermedades Inflamatorias del Intestino , Plantas Medicinales , Viola , Humanos , Ciclotidas/química , Viola/química , Linfocitos T , Extractos Vegetales/farmacología , Extractos Vegetales/química
4.
J Enzyme Inhib Med Chem ; 38(1): 2254019, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37735942

RESUMEN

Oxytocin (OT) is a neurohypophyseal peptide hormone containing a disulphide-bridged pseudocyclic conformation. The biomedical use of OT peptides is limited amongst others by disadvantageous pharmacokinetic parameters. To increase the stability of OT by replacing the disulphide bridge with the stable and more rigid [1,2,3]triazol-1-yl moiety, we employed the Cu2+-catalysed side chain-to-side chain azide-alkyne 1,3-cycloaddition. Here we report the design, synthesis, conformational analysis, and in vitro pharmacological activity of a homologous series of Cα1-to-Cα6 side chain-to-side chain [1,2,3]triazol-1-yl-containing OT analogues differing in the length of the bridge, location, and orientation of the linking moiety. Exploiting this macrocyclisation approach, it was possible to generate a systematic series of compounds providing interesting insight into the structure-conformation-function relationship of OT. Most analogues were able to adopt similar conformation to endogenous OT in water, namely, a type I ß-turn. This approach may in the future generate stabilised pharmacological peptide tools to advance understanding of OT physiology.


Asunto(s)
Alquinos , Oxitocina , Oxitocina/farmacología , Azidas , Catálisis , Disulfuros
5.
Biochem J ; 478(6): 1287-1301, 2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33666645

RESUMEN

Bowman-Birk inhibitors (BBIs) are plant-derived serine proteinase inhibitors. Endogenously, they function as defense molecules against pathogens and insects, but they also have been explored for applications in cancer treatment and inflammatory disorders. Here, we isolated 15 novel BBIs from the bulb of Hyacinthus orientalis (termed HOSPIs). These isoinhibitors consisted of two or three chains, respectively, that are linked by disulfides bonds based on proposed cleavage sites in the canonical BBI reactive site loop. They strongly inhibited trypsin (Ki = 0.22-167 nM) and α-chymotrypsin (Ki = 19-1200 nM). Notably, HOSPI-B4 contains a six-residue reactive loop, which appears to be the smallest such motif discovered in BBIs to date. HOSPI-A6 and -A7 contain an unusual reactive site, i.e. Leu-Met at the P1-P1' position and have strong inhibitory activity against trypsin, α-chymotrypsin, and elastase. Analysis of the cDNA encoding HOSPIs revealed that the precursors have HOSPI-like domains repeated at least twice with a defined linker sequence connecting individual domains. Lastly, mutational analysis of HOSPIs suggested that the linker sequence does not affect the inhibitory activity, and a Thr residue at the P2 site and a Pro at the P3' site are crucial for elastase inhibition. Using mammalian proteases as representative model system, we gain novel insight into the sequence diversity and proteolytic activity of plant BBI. These results may aid the rational design of BBI peptides with potent and distinct inhibitory activity against human, pathogen, or insect serine proteinases.


Asunto(s)
Hyacinthus/enzimología , Inhibidores de Serina Proteinasa/aislamiento & purificación , Inhibidores de Serina Proteinasa/farmacología , Secuencia de Aminoácidos , Clonación Molecular , Hyacinthus/genética , Homología de Secuencia , Inhibidores de Serina Proteinasa/genética , Especificidad por Sustrato
6.
J Nat Prod ; 84(8): 2238-2248, 2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34308635

RESUMEN

Cyclotides are plant-derived disulfide-rich peptides comprising a cyclic cystine knot, which confers remarkable stability against thermal, proteolytic, and chemical degradation. They represent an emerging class of G protein-coupled receptor (GPCR) ligands. In this study, utilizing a screening approach of plant extracts and pharmacological analysis we identified cyclotides from Carapichea ipecacuanha to be ligands of the κ-opioid receptor (KOR), an attractive target for developing analgesics with reduced side effects and therapeutics for multiple sclerosis (MS). This prompted us to verify whether [T20K]kalata B1, a cyclotide in clinical development for the treatment of MS, is able to modulate KOR signaling. T20K bound to and fully activated KOR in the low µM range. We then explored the ability of T20K to allosterically modulate KOR. Co-incubation of T20K with KOR ligands resulted in positive allosteric modulation in functional cAMP assays by altering either the efficacy of dynorphin A1-13 or the potency and efficacy of U50,488 (a selective KOR agonist), respectively. In addition, T20K increased the basal response upon cotreatment with U50,488. In the bioluminescence resonance energy transfer assay T20K negatively modulated the efficacy of U50,488. This study identifies cyclotides capable of modulating KOR and highlights the potential of plant-derived peptides as an opportunity to develop cyclotide-based KOR modulators.


Asunto(s)
Ciclotidas/farmacología , Receptores Opioides kappa/agonistas , Transducción de Señal/efectos de los fármacos , Cephaelis/química , Células HEK293 , Humanos , Ligandos , Extractos Vegetales/química
7.
J Nat Prod ; 84(1): 81-90, 2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33397096

RESUMEN

Cyclotides are plant-derived peptides found within five families of flowering plants (Violaceae, Rubiaceae, Fabaceae, Solanaceae, and Poaceae) that have a cyclic backbone and six conserved cysteine residues linked by disulfide bonds. Their presence within the Violaceae species seems ubiquitous, yet not all members of other families produce these macrocyclic peptides. The genus Palicourea Aubl. (Rubiaceae) contains hundreds of neotropical species of shrubs and small trees; however, only a few cyclotides have been discovered hitherto. Herein, five previously uncharacterized Möbius cyclotides within Palicourea sessilis and their pharmacological activities are described. Cyclotides were isolated from leaves and stems of this plant and identified as pase A-E, as well as the known peptide kalata S. Cyclotides were de novo sequenced by MALDI-TOF/TOF mass spectrometry, and their structures were solved by NMR spectroscopy. Because some cyclotides have been reported to modulate immune cells, pase A-D were assayed for cell proliferation of human primary activated T lymphocytes, and the results showed a dose-dependent antiproliferative function. The toxicity on other nonimmune cells was also assessed. This study reveals that pase cyclotides have potential for applications as immunosuppressants and in immune-related disorders.


Asunto(s)
Ciclotidas/efectos de los fármacos , Ciclotidas/metabolismo , Fabaceae/química , Linfocitos/metabolismo , Solanaceae/química , Violaceae/química , Brasil , Ciclotidas/química , Humanos , Linfocitos/química , Linfocitos/efectos de los fármacos , Magnoliopsida , Espectrometría de Masas , Hojas de la Planta/química , Hojas de la Planta/metabolismo
8.
J Nat Prod ; 83(11): 3305-3314, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33118348

RESUMEN

Plant peptide protease inhibitors are important molecules in seed storage metabolism and to fight insect pests. Commonly they contain multiple disulfide bonds and are exceptionally stable molecules. In this study, a novel peptide protease inhibitor from beetroot (Beta vulgaris) termed bevuTI-I was isolated, and its primary structure was determined via mass spectrometry-based amino acid sequencing. By sequence homology analysis a few peptides with high similarity to bevuTI-I, also known as the Mirabilis jalapa trypsin inhibitor subfamily of knottin-type protease inhibitors, were discovered. Hence, we assessed bevuTI-I for inhibitory activity toward trypsin (IC50 = 471 nM) and human prolyl oligopeptidase (IC50 = 11 µM), which is an emerging drug target for neurodegenerative and inflammatory disorders. Interestingly, using a customized bioinformatics approach, bevuTI-I was found to be the missing link to annotate 243 novel sequences of M. jalapa trypsin inhibitor-like peptides. According to their phylogenetic distribution they appear to be common in several plant families. Therefore, the presented approach and our results may help to discover and classify other plant-derived cystine knot peptides, a class of plant molecules that play important functions in plant physiology and are currently being explored as lead molecules and scaffolds in drug development.


Asunto(s)
Beta vulgaris/química , Cistina/química , Descubrimiento de Drogas , Péptidos/química , Proteínas de Plantas/química , Inhibidores de Proteasas/farmacología , Secuencia de Aminoácidos , Filogenia , Proteolisis , Homología de Secuencia de Aminoácido , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
9.
FASEB J ; : fj201800443, 2018 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-29939785

RESUMEN

Ants are emerging model systems to study cellular signaling because distinct castes possess different physiologic phenotypes within the same colony. Here we studied the functionality of inotocin signaling, an insect ortholog of mammalian oxytocin (OT), which was recently discovered in ants. In Lasius ants, we determined that specialization within the colony, seasonal factors, and physiologic conditions down-regulated the expression of the OT-like signaling system. Given this natural variation, we interrogated its function using RNAi knockdowns. Next-generation RNA sequencing of OT-like precursor knock-down ants highlighted its role in the regulation of genes involved in metabolism. Knock-down ants exhibited higher walking activity and increased self-grooming in the brood chamber. We propose that OT-like signaling in ants is important for regulating metabolic processes and locomotion.-Liutkeviciute, Z., Gil-Mansilla, E., Eder, T., Casillas-Pérez, B., Di Giglio, M. G., Muratspahic, E., Grebien, F., Rattei, T., Muttenthaler, M., Cremer, S., Gruber, C. W. Oxytocin-like signaling in ants influences metabolic gene expression and locomotor activity.

10.
Proc Natl Acad Sci U S A ; 113(12): 3227-32, 2016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-26957604

RESUMEN

Formation of correct disulfide bonds in the endoplasmic reticulum is a crucial step for folding proteins destined for secretion. Protein disulfide isomerases (PDIs) play a central role in this process. We report a previously unidentified, hypervariable family of PDIs that represents the most diverse gene family of oxidoreductases described in a single genus to date. These enzymes are highly expressed specifically in the venom glands of predatory cone snails, animals that synthesize a remarkably diverse set of cysteine-rich peptide toxins (conotoxins). Enzymes in this PDI family, termed conotoxin-specific PDIs, significantly and differentially accelerate the kinetics of disulfide-bond formation of several conotoxins. Our results are consistent with a unique biological scenario associated with protein folding: The diversification of a family of foldases can be correlated with the rapid evolution of an unprecedented diversity of disulfide-rich structural domains expressed by venomous marine snails in the superfamily Conoidea.


Asunto(s)
Venenos de Moluscos/química , Péptidos/química , Proteína Disulfuro Isomerasas/genética , Secuencia de Aminoácidos , Animales , Caracol Conus , Datos de Secuencia Molecular , Proteína Disulfuro Isomerasas/química , Pliegue de Proteína , Homología de Secuencia de Aminoácido
11.
Proc Natl Acad Sci U S A ; 113(15): 3960-5, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-27035952

RESUMEN

Multiple sclerosis (MS) is the most common autoimmune disease affecting the central nervous system. It is characterized by auto-reactive T cells that induce demyelination and neuronal degradation. Treatment options are still limited and several MS medications need to be administered by parenteral application but are modestly effective. Oral active drugs such as fingolimod have been weighed down by safety concerns. Consequently, there is a demand for novel, especially orally active therapeutics. Nature offers an abundance of compounds for drug discovery. Recently, the circular plant peptide kalata B1 was shown to silence T-cell proliferation in vitro in an IL-2-dependent mechanism. Owing to this promising effect, we aimed to determine in vivo activity of the cyclotide [T20K]kalata B1 using the MS mouse model experimental autoimmune encephalomyelitis (EAE). Treatment of mice with the cyclotide resulted in a significant delay and diminished symptoms of EAE by oral administration. Cyclotide application substantially impeded disease progression and did not exhibit adverse effects. Inhibition of lymphocyte proliferation and the reduction of proinflammatory cytokines, in particular IL-2, distinguish the cyclotide from other marketed drugs. Considering their stable structural topology and oral activity, cyclotides are candidates as peptide therapeutics for pharmaceutical drug development for treatment of T-cell-mediated disorders.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Ciclotidas/farmacología , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Interleucina-2/metabolismo , Esclerosis Múltiple/tratamiento farmacológico , Linfocitos T/efectos de los fármacos , Animales , Citocinas/inmunología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Evaluación Preclínica de Medicamentos , Inflamación/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
12.
J Nat Prod ; 81(5): 1203-1208, 2018 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-29757646

RESUMEN

Two new bracelet cyclotides from roots of Pombalia calceolaria with potential anticancer activity have been characterized in this work. The cyclotides Poca A and B (1 and 2) and the previously known CyO4 (3) were de novo sequenced by MALDI-TOF/TOF mass spectrometry (MS). The MS2 spectra were examined and the amino acid sequences were determined. The purified peptides were tested for their cytotoxicity and effects on cell migration of MDA-MB-231, a triple-negative breast cancer cell line. The isolated cyclotides reduced the number of cancer cells by more than 80% at 20 µM, and the concentration-related cytotoxic responses were observed with IC50 values of 1.8, 2.7, and 9.8 µM for Poca A (1), Poca B (2), and CyO4 (3), respectively. Additionally, the inhibition of cell migration (wound-healing assay) exhibited that CyO4 (3) presents an interesting activity profile, in being able to inhibit cell migration (50%) at a subtoxic concentration (2 µM). The distribution of these cyclotides in the roots was analyzed by MALDI imaging, demonstrating that all three compounds are present in the phloem and cortical parenchyma regions.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Calceolariaceae/química , Movimiento Celular/efectos de los fármacos , Ciclotidas/química , Ciclotidas/farmacología , Secuencia de Aminoácidos , Línea Celular Tumoral , Citotoxinas/química , Citotoxinas/farmacología , Femenino , Humanos , Raíces de Plantas/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
13.
J Proteome Res ; 15(5): 1487-96, 2016 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-26985971

RESUMEN

Several biologically active peptides contain a d- amino acid in a well-defined position, which is position 2 in all peptide epimers isolated to date from vertebrates and also some from invertebrates. The detection of such D- residues by standard analytical techniques is challenging. In tandem mass spectrometric (MS) analysis, although fragment masses are the same for all stereoisomers, peak intensities are known to depend on chirality. Here, we observe that the effect of a d- amino acid in the second N-terminal position on the fragmentation pattern in matrix assisted laser desorption time-of-flight spectrometry (MALDI-TOF/TOF MS) strongly depends on the peptide sequence. Stereosensitive fragmentation (SF) is correlated to a neighborhood effect, but the d- residue also exerts an overall effect influencing distant bonds. In a fingerprint analysis, multiple peaks can thus serve to identify the chirality of a sample in short time and potentially high throughput. Problematic variations between individual spots could be successfully suppressed by cospotting deuterated analogues of the epimers. By identifying the [d-Leu2] isomer of the predicted peptide GH-2 (gene derived bombininH) in skin secretions of the toad Bombina orientalis, we demonstrated the analytical power of SF-MALDI-TOF/TOF measurements. In conclusion, SF-MALDI-TOF/TOF MS combines high sensitivity, versatility, and the ability to complement other methods.


Asunto(s)
Aminoácidos/análisis , Péptidos/química , Proteínas/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Estereoisomerismo , Animales , Péptidos Catiónicos Antimicrobianos/análisis , Péptidos Catiónicos Antimicrobianos/química , Anuros , Deuterio , Piel/metabolismo
14.
J Biol Chem ; 290(29): 18056-18067, 2015 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-26013828

RESUMEN

Thionins are plant-specific antimicrobial peptides that have been isolated from the endosperm and leaves of cereals, from the leaves of mistletoes, and from several other plant species. They are generally basic peptides with three or four disulfide bridges and a molecular mass of ~5 kDa. Thionins are produced as preproproteins consisting of a signal peptide, the thionin domain, and an acidic domain. Previously, only mature thionin peptides have been isolated from plants, and in addition to removal of the signal peptide, at least one cleavage processing step between the thionin and the acidic domain is necessary to release the mature thionin. In this work, we identified a thionin proprotein-processing enzyme (TPPE) from barley. Purification of the enzyme was guided by an assay that used a quenched fluorogenic peptide comprising the amino acid sequence between the thionin and the acidic domain of barley leaf-specific thionin. The barley TPPE was identified as a serine protease (BAJ93208) and expressed in Escherichia coli as a strep tag-labeled protein. The barley BTH6 thionin proprotein was produced in E. coli using the vector pETtrx1a and used as a substrate. We isolated and sequenced the BTH6 thionin from barley to confirm the N and C terminus of the peptide in planta. Using an in vitro enzymatic assay, the recombinant TPPE was able to process the quenched fluorogenic peptide and to cleave the acidic domain at least at six sites releasing the mature thionin from the proprotein. Moreover, it was found that the intrinsic three-dimensional structure of the BTH6 thionin domain prevents cleavage of the mature BTH6 thionin by the TPPE.


Asunto(s)
Hordeum/enzimología , Proteínas de Plantas/metabolismo , Serina Proteasas/metabolismo , Tioninas/metabolismo , Secuencia de Aminoácidos , Hordeum/química , Hordeum/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas de Plantas/química , Proteínas de Plantas/aislamiento & purificación , Conformación Proteica , Proteolisis , Alineación de Secuencia , Serina Proteasas/química , Serina Proteasas/aislamiento & purificación , Tioninas/química
15.
Anal Biochem ; 497: 83-9, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26706804

RESUMEN

Cyclotides are an interesting family of circular plant peptides. Their unique three-dimensional structure, comprising a head-to-tail circular backbone chain and three disulfide bonds, confers them stability against thermal, chemical, and enzymatic degradation. Their unique stability under extreme conditions creates an idea about the possibility of using harsh extraction methods such as microwave-assisted extraction (MAE) without affecting their structures. MAE has been introduced as a potent extraction method for extraction of natural compounds, but it is seldom used for peptide and protein extraction. In this work, microwave irradiation was applied to the extraction of cyclotides. The procedure was performed in various steps using a microwave instrument under different conditions. High-performance liquid chromatography (HPLC) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) results show stability of cyclotide structures on microwave radiation. The influential parameters, including time, temperature, and the ratio of solvents that are affecting the MAE potency, were optimized. Optimal conditions were obtained at 20 min of irradiation time, 1200 W of system power in 60 °C, and methanol/water at the ratio of 90:10 (v/v) as solvent. The comparison of MAE results with maceration extraction shows that there are similarities between cyclotide sequences and extraction yields.


Asunto(s)
Ciclotidas/análisis , Microondas , Extractos Vegetales/química , Viola/química , Secuencia de Aminoácidos , Cromatografía Líquida de Alta Presión , Ciclotidas/aislamiento & purificación , Datos de Secuencia Molecular , Extractos Vegetales/aislamiento & purificación , Alineación de Secuencia , Extracción en Fase Sólida , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
16.
BMC Pregnancy Childbirth ; 16: 69, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-27036886

RESUMEN

BACKGROUND: Pharmaceutical uterotonics are effective for preventing postpartum hemorrhage and complications related to unsafe abortion. In Madagascar, however, traditional birth attendants (Matrones) commonly administer medicinal teas for uterotonic purposes. Little is known about Matrone practices and how they might coincide with efforts to increase uterotonic coverage. The aims of this study were to: 1) identify indications for presumed uterotonic plant use by Matrones, 2) explore uterotonic practices at the village level, and 3) describe the response of health practitioners to village-level uterotonic practices. METHODS: Twelve in-depth interviews with health practitioners, Matrones and community agents were conducted in local dialect. All interviews were audio-recorded, transcribed, and translated into English for analysis using Atlas.ti. Medicinal plant specimens were also collected and analyzed for the presence of uterotonic peptides. RESULTS: While Matrones reported to offer specific teas for uterotonic purposes, health practitioners discussed providing emergency care for women with complications associated with use of specific teas. Complications included retained placenta, hypertonic uterus, hemorrhage and sepsis. Chemical analysis indicated the presence of cysteine-rich peptides in the Dantoroa/Denturus plant used in some Matrones' teas. CONCLUSIONS: The presence of uterotonic peptides in one plant used by Matrones may indicate that Matrones intend to administer uterotonics for safer childbirth. This finding, combined with practitioner reports of complications related to some medicinal teas, points to a need for availability of an evidence-based uterotonic at the village level, namely, misoprostol pills or oxytocin in the form of uniject.


Asunto(s)
Parto Obstétrico/métodos , Partería/métodos , Oxitócicos/uso terapéutico , Hemorragia Posparto/prevención & control , Tés Medicinales/estadística & datos numéricos , Adulto , Cisteína/análisis , Femenino , Humanos , Madagascar , Oxitócicos/efectos adversos , Plantas Medicinales/química , Embarazo , Tés Medicinales/efectos adversos
17.
Proc Natl Acad Sci U S A ; 110(52): 21183-8, 2013 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-24248349

RESUMEN

Cyclotides are plant peptides comprising a circular backbone and three conserved disulfide bonds that confer them with exceptional stability. They were originally discovered in Oldenlandia affinis based on their use in traditional African medicine to accelerate labor. Recently, cyclotides have been identified in numerous plant species of the coffee, violet, cucurbit, pea, potato, and grass families. Their unique structural topology, high stability, and tolerance to sequence variation make them promising templates for the development of peptide-based pharmaceuticals. However, the mechanisms underlying their biological activities remain largely unknown; specifically, a receptor for a native cyclotide has not been reported hitherto. Using bioactivity-guided fractionation of an herbal peptide extract known to indigenous healers as "kalata-kalata," the cyclotide kalata B7 was found to induce strong contractility on human uterine smooth muscle cells. Radioligand displacement and second messenger-based reporter assays confirmed the oxytocin and vasopressin V1a receptors, members of the G protein-coupled receptor family, as molecular targets for this cyclotide. Furthermore, we show that cyclotides can serve as templates for the design of selective G protein-coupled receptor ligands by generating an oxytocin-like peptide with nanomolar affinity. This nonapeptide elicited dose-dependent contractions on human myometrium. These observations provide a proof of concept for the development of cyclotide-based peptide ligands.


Asunto(s)
Ciclotidas/metabolismo , Diseño de Fármacos , Oldenlandia/química , Oligopéptidos/biosíntesis , Oxitócicos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Análisis de Varianza , Cromatografía Líquida de Alta Presión , Clonación Molecular , Colágeno/efectos de los fármacos , Ciclotidas/análisis , Ciclotidas/farmacología , Femenino , Humanos , Ligandos , Espectroscopía de Resonancia Magnética , Oxitócicos/análisis , Oxitócicos/farmacología , Ensayo de Unión Radioligante , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Contracción Uterina/efectos de los fármacos
18.
J Proteome Res ; 14(11): 4851-62, 2015 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-26399495

RESUMEN

Cyclotides are plant-derived mini proteins. They are genetically encoded as precursor proteins that become post-translationally modified to yield circular cystine-knotted molecules. Because of this structural topology cyclotides resist enzymatic degradation in biological fluids, and hence they are considered as promising lead molecules for pharmaceutical applications. Despite ongoing efforts to discover novel cyclotides and analyze their biodiversity, it is not clear how many individual peptides a single plant specimen can express. Therefore, we investigated the transcriptome and cyclotide peptidome of Viola tricolor. Transcriptome mining enabled the characterization of cyclotide precursor architecture and processing sites important for biosynthesis of mature peptides. The cyclotide peptidome was explored by mass spectrometry and bottom-up proteomics using the extracted peptide sequences as queries for database searching. In total 164 cyclotides were discovered by nucleic acid and peptide analysis in V. tricolor. Therefore, violaceous plants at a global scale may be the source to as many as 150 000 individual cyclotides. Encompassing the diversity of V. tricolor as a combinatorial library of bioactive peptides, this commercially available medicinal herb may be a suitable starting point for future bioactivity-guided screening studies.


Asunto(s)
Ciclotidas/química , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Procesamiento Proteico-Postraduccional , Transcriptoma , Violaceae/genética , Cromatografía Líquida de Alta Presión , Ciclotidas/genética , Ciclotidas/aislamiento & purificación , Ciclotidas/metabolismo , Motivos Nodales de Cisteina/genética , Minería de Datos , Biblioteca de Genes , Extracción Líquido-Líquido , Modelos Moleculares , Datos de Secuencia Molecular , Componentes Aéreos de las Plantas/química , Extractos Vegetales/química , Proteínas de Plantas/química , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo , Proteoma/genética , Proteoma/metabolismo , Proteómica/métodos , Alineación de Secuencia , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Violaceae/metabolismo
19.
Mol Pharmacol ; 87(1): 39-51, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25354767

RESUMEN

Cell-permeable orthosteric ligands can assist folding of G protein-coupled receptors in the endoplasmic reticulum (ER); this pharmacochaperoning translates into increased cell surface levels of receptors. Here we used a folding-defective mutant of human A1-adenosine receptor as a sensor to explore whether endogenously produced adenosine can exert a chaperoning effect. This A1-receptor-Y(288)A was retained in the ER of stably transfected human embryonic kidney 293 cells but rapidly reached the plasma membrane in cells incubated with an A1 antagonist. This was phenocopied by raising intracellular adenosine levels with a combination of inhibitors of adenosine kinase, adenosine deaminase, and the equilibrative nucleoside transporter: mature receptors with complex glycosylation accumulated at the cell surface and bound to an A1-selective antagonist with an affinity indistinguishable from the wild-type A1 receptor. The effect of the inhibitor combination was specific, because it did not result in enhanced surface levels of two folding-defective human V2-vasopressin receptor mutants, which were susceptible to pharmacochaperoning by their cognate antagonist. Raising cellular adenosine levels by subjecting cells to hypoxia (5% O2) reproduced chaperoning by the inhibitor combination and enhanced surface expression of A1-receptor-Y(288)A within 1 hour. These findings were recapitulated for the wild-type A1 receptor. Taken together, our observations document that endogenously formed adenosine can chaperone its cognate A1 receptor. This results in a positive feedback loop that has implications for the retaliatory metabolite concept of adenosine action: if chaperoning by intracellular adenosine results in elevated cell surface levels of A1 receptors, these cells will be more susceptible to extracellular adenosine and thus more likely to cope with metabolic distress.


Asunto(s)
Adenosina/metabolismo , Retículo Endoplásmico/metabolismo , Receptor de Adenosina A1/genética , Receptor de Adenosina A1/metabolismo , Antagonistas del Receptor de Adenosina A1/metabolismo , Inhibidores Enzimáticos/farmacología , Células HEK293 , Humanos , Chaperonas Moleculares/metabolismo , Mutación , Células Plasmáticas/metabolismo , Pliegue de Proteína , Estrés Fisiológico/efectos de los fármacos
20.
J Nat Prod ; 78(5): 1073-82, 2015 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-25894999

RESUMEN

Cyclotides are head-to-tail cyclized peptides comprising a stabilizing cystine-knot motif. To date, they are well known for their diverse bioactivities such as anti-HIV and immunosuppressive properties. Yet little is known about specific molecular mechanisms, in particular the interaction of cyclotides with cellular protein targets. Native and synthetic cyclotide-like peptides from Momordica plants are potent and selective inhibitors of different serine-type proteinases such as trypsin, chymotrypsin, matriptase, and tryptase-beta. This study describes the bioactivity-guided isolation of a cyclotide from Psychotria solitudinum as an inhibitor of another serine-type protease, namely, the human prolyl oligopeptidase (POP). Analysis of the inhibitory potency of Psychotria extracts and subsequent fractionation by liquid chromatography yielded the isolated peptide psysol 2 (1), which exhibited an IC50 of 25 µM. In addition the prototypical cyclotide kalata B1 inhibited POP activity with an IC50 of 5.6 µM. The inhibitory activity appeared to be selective for POP, since neither psysol 2 nor kalata B1 were able to inhibit the proteolytic activity of trypsin or chymotrypsin. The enzyme POP is well known for its role in memory and learning processes, and it is currently being considered as a promising therapeutic target for the cognitive deficits associated with several psychiatric and neurodegenerative diseases, such as schizophrenia and Parkinson's disease. In the context of discovery and development of POP inhibitors with beneficial ADME properties, cyclotides may be suitable starting points considering their stability in biological fluids and possible oral bioavailability.


Asunto(s)
Ciclotidas/química , Ciclotidas/farmacología , Psychotria/química , Serina Endopeptidasas/efectos de los fármacos , Inhibidores de Serina Proteinasa/química , Algoritmos , Secuencia de Aminoácidos , Quimotripsina/efectos de los fármacos , Humanos , Estructura Molecular , Prolil Oligopeptidasas , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Relación Estructura-Actividad , Tripsina/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA