Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cryobiology ; 99: 28-39, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33529683

RESUMEN

Ice-binding proteins (IBPs) inhibit the growth of ice through surface adsorption. In some freeze-resistant fishes and insects, circulating IBPs serve as antifreeze proteins to stop ice growth by lowering the freezing point. Plants are less able to avoid freezing and some use IBPs to minimize the damage caused in the frozen state by ice recrystallization, which is the growth of large ice grains at the expense of small ones. Here we have accurately and reproducibly measured the ice recrystallization inhibition (IRI) activity of over a dozen naturally occurring IBPs from fishes, insects, plants, and microorganisms using a modified 'splat' method on serial dilutions of IBPs whose concentrations were determined by amino acid analysis. The endpoint of IRI, which was scored as the lowest protein concentration at which no recrystallization was observed, varied for the different IBPs over two orders of magnitude from 1000 nM to 5 nM. Moreover, there was no apparent correlation between their IRI levels and reported antifreeze activities. IBPs from insects and fishes had similar IRI activity, even though the insect IBPs are typically 10x more active in freezing point depression. Plant IBPs had weak antifreeze activity but were more effective at IRI. Bacterial IBPs involved in ice adhesion showed both strong freezing point depression and IRI. Two trends did emerge, including that basal plane binding IBPs correlated with stronger IRI activity and larger IBPs had higher IRI activity.


Asunto(s)
Proteínas Portadoras , Hielo , Animales , Proteínas Anticongelantes/metabolismo , Criopreservación/métodos , Cristalización , Peces , Congelación , Insectos
2.
Biochem J ; 477(12): 2179-2192, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32459306

RESUMEN

Ice-binding proteins (IBPs) are found in many biological kingdoms where they protect organisms from freezing damage as antifreeze agents or inhibitors of ice recrystallization. Here, the crystal structure of recombinant IBP from carrot (Daucus carota) has been solved to a resolution of 2.3 Å. As predicted, the protein is a structural homologue of a plant polygalacturonase-inhibiting protein forming a curved solenoid structure with a leucine-rich repeat motif. Unexpectedly, close examination of its surface did not reveal any large regions of flat, regularly spaced hydrophobic residues that characterize the ice-binding sites (IBSs) of potent antifreeze proteins from freeze-resistant fish and insects. An IBS was defined by site-directed mutagenesis of residues on the convex surface of the carrot solenoid. This imperfect site is reminiscent of the irregular IBS of grass 'antifreeze' protein. Like the grass protein, the carrot IBP has weak freezing point depression activity but is extremely active at nanomolar concentrations in inhibiting ice recrystallization. Ice crystals formed in the presence of both plant proteins grow slowly and evenly in all directions. We suggest that this slow, controlled ice growth is desirable for freeze tolerance. The fact that two plant IBPs have evolved very different protein structures to affect ice in a similar manner suggests this pattern of weak freezing point depression and strong ice recrystallization inhibition helps their host to tolerate freezing rather than to resist it.


Asunto(s)
Proteínas Anticongelantes/química , Proteínas Anticongelantes/metabolismo , Daucus carota/metabolismo , Hielo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Sitios de Unión , Cristalización , Congelación , Interacciones Hidrofóbicas e Hidrofílicas , Conformación Proteica , Dominios Proteicos
3.
Methods Mol Biol ; 2156: 303-332, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32607990

RESUMEN

The characterization of ice-binding proteins (IBPs) from plants can involve many techniques, a few of which are presented here. Chief among these methods are tests for ice recrystallization inhibition, an activity characteristic of plant IBPs. Two related procedures are described, both of which can be used to demonstrate and quantify ice-binding activity. First, is the traditional "splat" assay, which can easily be set up using common laboratory equipment, and second, is our modification of this method using superhydrophobic coated sapphire for analysis of multiple samples in tandem. Thermal hysteresis is described as another method for quantifying ice-binding activity, during which ice crystal morphology observations can be used to provide clues about ice-plane binding. Once ice-binding activity has been evaluated, it is necessary to verify IBP identity. We detail two methods for enriching IBPs from complex mixtures using ice-affinity purification, the "ice-finger" and "ice-shell" methods, and we highlight their advantages and limitations for the isolation of plant IBPs. Recombinant IBP expression, necessary for detailed ice-binding analysis, can present challenges. Here, a strategy for recovery of soluble, active protein is described. Lastly, verification of function in planta borrows from standard protocols, but with an additional screen applicable to IBPs. Together, these methods, and a few considerations critical to success, can be used to assist researchers wishing to isolate and characterize IBPs from plants.


Asunto(s)
Proteínas Anticongelantes/química , Proteínas Anticongelantes/aislamiento & purificación , Fenómenos Fisiológicos de las Plantas , Proteínas de Plantas/química , Proteínas de Plantas/aislamiento & purificación , Proteínas Anticongelantes/metabolismo , Cromatografía de Afinidad , Expresión Génica , Proteínas de Plantas/metabolismo , Proteínas Recombinantes , Transgenes
4.
Biomolecules ; 9(5)2019 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-31075842

RESUMEN

Micromolar concentrations of hyperactive antifreeze proteins (AFPs) from insects can prevent aqueous solutions from freezing down to at least -6 °C. To explore cryopreservation of cells, tissues and organs at these temperatures without ice formation, we have developed a protocol to reliably produce ultrapure Tenebrio molitor AFP from cold-acclimated beetle larvae reared in the laboratory. The AFP was prepared from crude larval homogenates through five cycles of rotary ice-affinity purification, which can be completed in one day. Recovery of the AFP at each step was >90% and no impurities were detected in the final product. The AFP is a mixture of isoforms that are more active in combination than any one single component. Toxicity testing of the purified AFP in cell culture showed no inhibition of cell growth. The production process can easily be scaled up to industrial levels, and the AFP used in cryobiology applications was recovered for reuse in good yield and with full activity.


Asunto(s)
Proteínas Anticongelantes/aislamiento & purificación , Criobiología , Tenebrio/química , Secuencia de Aminoácidos , Animales , Proteínas Anticongelantes/química , Proteínas Anticongelantes/toxicidad , Supervivencia Celular/efectos de los fármacos , Células HEK293 , Humanos , Hielo , Larva , Monofenol Monooxigenasa/antagonistas & inhibidores , Monofenol Monooxigenasa/metabolismo , Isoformas de Proteínas/química , Pruebas de Toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA