Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Plant Cell Environ ; 47(4): 1285-1299, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38213092

RESUMEN

Using a unique 8-year data set (2010-2017) of phloem data, we studied the effect of temperature and precipitation on the phloem anatomy (conduit area, widths of ring, early and late phloem) and xylem-ring width in two coexisting temperate tree species, Picea abies and Fagus sylvatica, from three contrasting European temperate forest sites. Histometric analyses were performed on microcores taken from tree stems in autumn. We found high interannual variability and sensitivity of phloem anatomy and xylem-ring widths to precipitation and temperature; however, the responses were species- and site-specific. The contrasting response of xylem and phloem-ring widths of the same tree species to weather conditions was found at the two Slovenian sites generally well supplied with precipitation, while at the driest Czech site, the influence of weather factors on xylem and phloem ring widths was synchronised. Since widths of mean annual xylem and phloem increments were narrowest at the Czech site, this site is suggested to be most restrictive for the radial growth of both species. By influencing the seasonal patterns of xylem and phloem development, water availability appears to be the most important determinant of tissue- and species-specific responses to local weather conditions.


Asunto(s)
Abies , Fagus , Picea , Pinus , Picea/fisiología , Floema , Clima , Árboles/fisiología
2.
Glob Chang Biol ; 29(6): 1606-1617, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36451586

RESUMEN

Despite growing interest in predicting plant phenological shifts, advanced spring phenology by global climate change remains debated. Evidence documenting either small or large advancement of spring phenology to rising temperature over the spatio-temporal scales implies a potential existence of a thermal threshold in the responses of forests to global warming. We collected a unique data set of xylem cell-wall-thickening onset dates in 20 coniferous species covering a broad mean annual temperature (MAT) gradient (-3.05 to 22.9°C) across the Northern Hemisphere (latitudes 23°-66° N). Along the MAT gradient, we identified a threshold temperature (using segmented regression) of 4.9 ± 1.1°C, above which the response of xylem phenology to rising temperatures significantly decline. This threshold separates the Northern Hemisphere conifers into cold and warm thermal niches, with MAT and spring forcing being the primary drivers for the onset dates (estimated by linear and Bayesian mixed-effect models), respectively. The identified thermal threshold should be integrated into the Earth-System-Models for a better understanding of spring phenology in response to global warming and an improved prediction of global climate-carbon feedbacks.


Asunto(s)
Tracheophyta , Teorema de Bayes , Bosques , Frío , Temperatura , Cambio Climático , Estaciones del Año
3.
Proc Natl Acad Sci U S A ; 117(34): 20645-20652, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32759218

RESUMEN

Wood formation consumes around 15% of the anthropogenic CO2 emissions per year and plays a critical role in long-term sequestration of carbon on Earth. However, the exogenous factors driving wood formation onset and the underlying cellular mechanisms are still poorly understood and quantified, and this hampers an effective assessment of terrestrial forest productivity and carbon budget under global warming. Here, we used an extensive collection of unique datasets of weekly xylem tissue formation (wood formation) from 21 coniferous species across the Northern Hemisphere (latitudes 23 to 67°N) to present a quantitative demonstration that the onset of wood formation in Northern Hemisphere conifers is primarily driven by photoperiod and mean annual temperature (MAT), and only secondarily by spring forcing, winter chilling, and moisture availability. Photoperiod interacts with MAT and plays the dominant role in regulating the onset of secondary meristem growth, contrary to its as-yet-unquantified role in affecting the springtime phenology of primary meristems. The unique relationships between exogenous factors and wood formation could help to predict how forest ecosystems respond and adapt to climate warming and could provide a better understanding of the feedback occurring between vegetation and climate that is mediated by phenology. Our study quantifies the role of major environmental drivers for incorporation into state-of-the-art Earth system models (ESMs), thereby providing an improved assessment of long-term and high-resolution observations of biogeochemical cycles across terrestrial biomes.


Asunto(s)
Tracheophyta/crecimiento & desarrollo , Madera/crecimiento & desarrollo , Xilema/crecimiento & desarrollo , Clima , Cambio Climático , Ecosistema , Bosques , Calentamiento Global , Modelos Biológicos , Fotoperiodo , Estaciones del Año , Temperatura , Tracheophyta/genética , Árboles/crecimiento & desarrollo
5.
Polymers (Basel) ; 16(20)2024 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-39458758

RESUMEN

The objective of this research was to develop a mathematical model of the hot-pressing process for making flat-pressed wood-polymer composites (FPWPCs). This model was used to calculate and predict the temperature and time required for FPWPC pressing. The model's performance was analysed using the experimental results of hot pressing FPWPCs. It was found that an increase in the content of wood particles led to a rapid increase in the pressing time. The model and experiment showed that the core temperature of the wood-polymer mat remained nearly constant for the first 20-30 s of the hot-pressing process. After this period, this temperature increased rapidly until it reached 100 °C, after which the rate of increase began to decelerate sharply. This transition was more distinct in FPWPCs with a high wood-particle content, while in those with a high thermoplastic-polymer content, it was smoother. Increasing the pressing temperature contributed to a reduction in the time required to heat the FPWPC, as confirmed by both experimental data and the modelling of the hot-pressing process. A decrease in the predicted density of the FPWPC resulted in a directly proportional increase in the time required to heat the mat. Validation of the mathematical model revealed a mean absolute percentage error (MAPE) of only 2.5%, confirming its high precision and reliability. The developed mathematical model exhibited a high degree of accuracy and can be used for further calculations of the time required for FPWPC pressing, considering variable parameters such as pressing temperature, wood-polymer ratio, mat thickness, and density.

6.
Curr Biol ; 34(6): 1161-1167.e3, 2024 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-38325374

RESUMEN

Wood growth is key to understanding the feedback of forest ecosystems to the ongoing climate warming. An increase in spatial synchrony (i.e., coincident changes in distant populations) of spring phenology is one of the most prominent climate responses of forest trees. However, whether temperature variability contributes to an increase in the spatial synchrony of spring phenology and its underlying mechanisms remains largely unknown. Here, we analyzed an extensive dataset of xylem phenology observations of 20 conifer species from 75 sites over the Northern Hemisphere. Along the gradient of increase in temperature variability in the 75 sites, we observed a convergence in the onset of cell enlargement roughly toward the 5th of June, with a convergence in the onset of cell wall thickening toward the summer solstice. The increase in rainfall since the 5th of June is favorable for cell division and expansion, and as the most hours of sunlight are received around the summer solstice, it allows the optimization of carbon assimilation for cell wall thickening. Hence, the convergences can be considered as the result of matching xylem phenological activities to favorable conditions in regions with high temperature variability. Yet, forest trees relying on such consistent seasonal cues for xylem growth could constrain their ability to respond to climate warming, with consequences for the potential growing season length and, ultimately, forest productivity and survival in the future.


Asunto(s)
Tracheophyta , Temperatura , Ecosistema , Cambio Climático , Xilema , Estaciones del Año , Árboles
7.
Nat Commun ; 15(1): 6169, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103349

RESUMEN

As major terrestrial carbon sinks, forests play an important role in mitigating climate change. The relationship between the seasonal uptake of carbon and its allocation to woody biomass remains poorly understood, leaving a significant gap in our capacity to predict carbon sequestration by forests. Here, we compare the intra-annual dynamics of carbon fluxes and wood formation across the Northern hemisphere, from carbon assimilation and the formation of non-structural carbon compounds to their incorporation in woody tissues. We show temporally coupled seasonal peaks of carbon assimilation (GPP) and wood cell differentiation, while the two processes are substantially decoupled during off-peak periods. Peaks of cambial activity occur substantially earlier compared to GPP, suggesting the buffer role of non-structural carbohydrates between the processes of carbon assimilation and allocation to wood. Our findings suggest that high-resolution seasonal data of ecosystem carbon fluxes, wood formation and the associated physiological processes may reduce uncertainties in carbon source-sink relationships at different spatial scales, from stand to ecosystem levels.


Asunto(s)
Secuestro de Carbono , Carbono , Cambio Climático , Bosques , Estaciones del Año , Tracheophyta , Madera , Carbono/metabolismo , Madera/metabolismo , Madera/química , Tracheophyta/metabolismo , Biomasa , Ecosistema , Ciclo del Carbono , Árboles/metabolismo
8.
Polymers (Basel) ; 14(17)2022 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-36080610

RESUMEN

The volume of deadwood increases annually because of changes in environmental, climatic, and hydrological conditions. On the other hand, during the last decade, manufacturers of wood-based boards have been facing an acute problem of a shortage of conventional raw materials. The purpose of this study was to evaluate the possibility of using wood particles from deadwood in the production of particleboards. Three-layer particleboards with different content of deadwood particles (0%, 25%, 50%, 75%, 100%) were produced. Conventional urea-formaldehyde (UF) resin was used for gluing the particles. The physical and mechanical properties of the boards, as well as the formaldehyde content in the boards, were determined. In addition, the effect of adding melamine-urea-formaldehyde (MUF) resin to UF adhesive on the properties of the boards was investigated. Replacing conventional sound wood particles with deadwood particles leads to deterioration of the physical and mechanical properties of the boards. The boards from deadwood particles absorb more water and swell more. The bending strength (MOR), modulus of elasticity in bending (MOE), and internal bonding (IB) values for boards with 100% deadwood particles are reduced by 26.5%, 23.1%, and 72.4%, respectively, compared to reference boards from sound wood particles. Despite this, a significant advantage is that boards made from 100% deadwood particles are characterized by 34.5% less formaldehyde content than reference boards made from conventional sound wood. Moreover, adding 3% of MUF resin to UF adhesive increases MOR, MOE, and IB by 44.1%, 43.3%, and 294.4%, respectively.

9.
Materials (Basel) ; 15(18)2022 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-36143787

RESUMEN

The aim of this study was to improve the properties of lightweight particleboards by their veneering. The industrially produced wood particles, rotary-cut birch veneer, expanded polystyrene (EPS) granules and urea-formaldehyde (UF) resin were used to manufacture non-veneered and veneered boards in laboratory conditions. The boards were manufactured with different densities of 350, 450 and 550 kg/m3 and with various levels of EPS content 4, 7 and 10%. Boards without EPS granules as the reference were also manufactured. Bending strength (MOR), modulus of elasticity in bending (MOE), internal bond (IB) strength, thickness swelling (TS) and water absorption (WA) of lightweight particleboards were determined. This study confirmed that veneering of lightweight particleboards by birch veneer improved mechanical properties significantly. The MOR and MOE of veneered boards throughout the whole density range of 350-550 kg/m3 meet the requirements of the CEN/TS 16368 for lightweight particleboards types LP1 and LP2. The IB strength of veneered boards only with density of 550 kg/m3 meets the requirements of CEN/TS 16368 (type LP1). The MOR, MOE and IB of non-veneered boards also meet the requirements of CEN/TS 16368 (type LP1) except boards with density of 350 kg/m3 for MOR and MOE, and except densities of 350 and 450 kg/m3 for IB.

10.
Nat Commun ; 13(1): 28, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013178

RESUMEN

Heatwaves exert disproportionately strong and sometimes irreversible impacts on forest ecosystems. These impacts remain poorly understood at the tree and species level and across large spatial scales. Here, we investigate the effects of the record-breaking 2018 European heatwave on tree growth and tree water status using a collection of high-temporal resolution dendrometer data from 21 species across 53 sites. Relative to the two preceding years, annual stem growth was not consistently reduced by the 2018 heatwave but stems experienced twice the temporary shrinkage due to depletion of water reserves. Conifer species were less capable of rehydrating overnight than broadleaves across gradients of soil and atmospheric drought, suggesting less resilience toward transient stress. In particular, Norway spruce and Scots pine experienced extensive stem dehydration. Our high-resolution dendrometer network was suitable to disentangle the effects of a severe heatwave on tree growth and desiccation at large-spatial scales in situ, and provided insights on which species may be more vulnerable to climate extremes.


Asunto(s)
Cambio Climático , Deshidratación , Ecología , Bosques , Rayos Infrarrojos , Clima , Sequías , Ecosistema , Noruega , Picea , Pinus sylvestris , Suelo , Árboles , Agua
11.
Recent Pat Nanotechnol ; 12(1): 13-21, 2018 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-28786344

RESUMEN

BACKGROUND: Wood science and nanomaterials science interact together in two different aspects; a) fabrication of lignocellulosic nanomaterials derived from wood and plant-based sources and b) surface or bulk wood modification by nanoparticles. In this review, we attempt to visualize the impact of nanoparticles on the wood coating and preservation treatments based on a thorough registration of the patent databases. METHOD: The study was carried out as an overview of the scientifically most followed trends on nanoparticles utilization in wood science and wood protection depicted by recent universal filed patents. This review is exclusively targeted on the solid (timber) wood as a subject material. RESULTS: Utilization of mainly metal nanoparticles as photoprotection, antibacterial, antifungal, antiabrasive and functional component on wood modification treatments was found to be widely patented. Additionally, an apparent minimization in the emission of volatile organic compounds (VOCs) has been succeeded. CONCLUSION: Bulk wood preservation and more importantly, wood coating, splay the range of strengthening wood dimensional stability and biological degradation, against moisture absorption and fungi respectively. Nanoparticle materials have addressed various issues of wood science in a more efficient and environmental way than the traditional methods. Nevertheless, abundant tests and regulations are still needed before industrializing or recycling these products.


Asunto(s)
Nanotecnología , Madera , Antiinfecciosos/farmacología , Formaldehído/análisis , Interacciones Hidrofóbicas e Hidrofílicas , Propiedades de Superficie , Rayos Ultravioleta , Compuestos Orgánicos Volátiles/análisis
12.
Front Plant Sci ; 6: 730, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26442044

RESUMEN

There is limited information on intra-annual plasticity of secondary tissues of tree species growing under different environmental conditions. To increase the knowledge about the plasticity of secondary growth, which allows trees to adapt to specific local climatic regimes, we examined climate-radial growth relationships of Norway spruce [Picea abies (L.) H. Karst.] from three contrasting locations in the temperate climatic zone by analyzing tree-ring widths for the period 1932-2010, and cell characteristics in xylem and phloem increments formed in the years 2009-2011. Variation in the structure of xylem and phloem increments clearly shows that plasticity in seasonal dynamics of cambial cell production and cell differentiation exists on xylem and phloem sides. Anatomical characteristics of xylem and phloem cells are predominantly site-specific characteristics, because they varied among sites but were fairly uniform among years in trees from the same site. Xylem and phloem tissues formed in the first part of the growing season seemed to be more stable in structure, indicating their priority over latewood and late phloem for tree performance. Long-term climate and radial growth analyses revealed that growth was in general less dependent on precipitation than on temperature; however, growth sensitivity to local conditions differed among the sites. Only partial dependence of radial growth of spruce on climatic factors on the selected sites confirms its strategy to adapt the structure of wood and phloem increments to function optimally in local conditions.

13.
Nat Plants ; 1: 15160, 2015 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-27251531

RESUMEN

Wood is the main terrestrial biotic reservoir for long-term carbon sequestration(1), and its formation in trees consumes around 15% of anthropogenic carbon dioxide emissions each year(2). However, the seasonal dynamics of woody biomass production cannot be quantified from eddy covariance or satellite observations. As such, our understanding of this key carbon cycle component, and its sensitivity to climate, remains limited. Here, we present high-resolution cellular based measurements of wood formation dynamics in three coniferous forest sites in northeastern France, performed over a period of 3 years. We show that stem woody biomass production lags behind stem-girth increase by over 1 month. We also analyse more general phenological observations of xylem tissue formation in Northern Hemisphere forests and find similar time lags in boreal, temperate, subalpine and Mediterranean forests. These time lags question the extension of the equivalence between stem size increase and woody biomass production to intra-annual time scales(3, 4, 5, 6). They also suggest that these two growth processes exhibit differential sensitivities to local environmental conditions. Indeed, in the well-watered French sites the seasonal dynamics of stem-girth increase matched the photoperiod cycle, whereas those of woody biomass production closely followed the seasonal course of temperature. We suggest that forecasted changes in the annual cycle of climatic factors(7) may shift the phase timing of stem size increase and woody biomass production in the future.

14.
Tree Physiol ; 34(8): 869-81, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24728295

RESUMEN

Despite its major economic importance and the vulnerability of Picea abies (L.) H. Karst. to climate change, how its radial growth at intra-annual resolution is influenced by weather conditions in forest stands with a high production capacity has scarcely been explored. Between 2009 and 2011, phenological variation in seasonal cambial cell production (CP) was analysed in adult P. abies trees from three contrasting sites, differing in altitude and latitude. The results indicate that the timing of cambial CP is a highly synchronic process within populations since in all cases the cambium simultaneously started and stopped producing xylem and phloem cells. Our results also demonstrate that the phenology of cambial CP is highly variable and plastic between years, depending on seasonal temperature and precipitation variation. Differences among sites, however, are only partially explained by different environmental (elevation and altitude) and climatic conditions, suggesting that local adaptation may also play a decisive role in the strategy of P. abies for adapting wood and phloem increments to function optimally under local conditions.


Asunto(s)
Adaptación Fisiológica , Cámbium/crecimiento & desarrollo , Ambiente , Floema/crecimiento & desarrollo , Picea/fisiología , Estaciones del Año , Xilema/crecimiento & desarrollo , Altitud , Clima , Cambio Climático , Bosques , Lluvia , Temperatura , Árboles/fisiología , Madera/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA