Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Cell Dev Biol ; 35: 591-613, 2019 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-31299172

RESUMEN

The vertebrate vasculature displays high organotypic specialization, with the structure and function of blood vessels catering to the specific needs of each tissue. A unique feature of the central nervous system (CNS) vasculature is the blood-brain barrier (BBB). The BBB regulates substance influx and efflux to maintain a homeostatic environment for proper brain function. Here, we review the development and cell biology of the BBB, focusing on the cellular and molecular regulation of barrier formation and the maintenance of the BBB through adulthood. We summarize unique features of CNS endothelial cells and highlight recent progress in and general principles of barrier regulation. Finally, we illustrate why a mechanistic understanding of the development and maintenance of the BBB could provide novel therapeutic opportunities for CNS drug delivery.


Asunto(s)
Transporte Biológico/fisiología , Barrera Hematoencefálica/citología , Barrera Hematoencefálica/crecimiento & desarrollo , Sistema Nervioso Central/citología , Células Endoteliales/citología , Animales , Astrocitos/citología , Membrana Basal/citología , Membrana Basal/metabolismo , Transporte Biológico/genética , Barrera Hematoencefálica/metabolismo , Encéfalo/citología , Encéfalo/fisiología , Sistema Nervioso Central/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/fisiología , Homeostasis , Humanos , Leucocitos , Acoplamiento Neurovascular/fisiología , Pericitos/citología , Uniones Estrechas , Transcitosis/fisiología , Vía de Señalización Wnt/genética , Vía de Señalización Wnt/fisiología
2.
Nature ; 596(7872): 444-448, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34349262

RESUMEN

MFSD2A is a sodium-dependent lysophosphatidylcholine symporter that is responsible for the uptake of docosahexaenoic acid into the brain1,2, which is crucial for the development and performance of the brain3. Mutations that affect MFSD2A cause microcephaly syndromes4,5. The ability of MFSD2A to transport lipid is also a key mechanism that underlies its function as an inhibitor of transcytosis to regulate the blood-brain barrier6,7. Thus, MFSD2A represents an attractive target for modulating the permeability of the blood-brain barrier for drug delivery. Here we report the cryo-electron microscopy structure of mouse MFSD2A. Our structure defines the architecture of this important transporter, reveals its unique extracellular domain and uncovers its substrate-binding cavity. The structure-together with our functional studies and molecular dynamics simulations-identifies a conserved sodium-binding site, reveals a potential lipid entry pathway and helps to rationalize MFSD2A mutations that underlie microcephaly syndromes. These results shed light on the critical lipid transport function of MFSD2A and provide a framework to aid in the design of specific modulators for therapeutic purposes.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Metabolismo de los Lípidos , Simportadores/química , Simportadores/metabolismo , Animales , Sitios de Unión , Transporte Biológico , Células HEK293 , Humanos , Ratones , Modelos Moleculares , Simulación de Dinámica Molecular , Mutación , Dominios Proteicos , Sodio/metabolismo , Simportadores/genética , Simportadores/ultraestructura
3.
Nature ; 579(7797): 106-110, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32076269

RESUMEN

Proper brain function depends on neurovascular coupling: neural activity rapidly increases local blood flow to meet moment-to-moment changes in regional brain energy demand1. Neurovascular coupling is the basis for functional brain imaging2, and impaired neurovascular coupling is implicated in neurodegeneration1. The underlying molecular and cellular mechanisms of neurovascular coupling remain poorly understood. The conventional view is that neurons or astrocytes release vasodilatory factors that act directly on smooth muscle cells (SMCs) to induce arterial dilation and increase local blood flow1. Here, using two-photon microscopy to image neural activity and vascular dynamics simultaneously in the barrel cortex of awake mice under whisker stimulation, we found that arteriolar endothelial cells (aECs) have an active role in mediating neurovascular coupling. We found that aECs, unlike other vascular segments of endothelial cells in the central nervous system, have abundant caveolae. Acute genetic perturbations that eliminated caveolae in aECs, but not in neighbouring SMCs, impaired neurovascular coupling. Notably, caveolae function in aECs is independent of the endothelial NO synthase (eNOS)-mediated NO pathway. Ablation of both caveolae and eNOS completely abolished neurovascular coupling, whereas the single mutants exhibited partial impairment, revealing that the caveolae-mediated pathway in aECs is a major contributor to neurovascular coupling. Our findings indicate that vasodilation is largely mediated by endothelial cells that actively relay signals from the central nervous system to SMCs via a caveolae-dependent pathway.


Asunto(s)
Arteriolas/citología , Arteriolas/metabolismo , Caveolas/metabolismo , Sistema Nervioso Central/citología , Acoplamiento Neurovascular , Animales , Corteza Cerebral/citología , Células Endoteliales/metabolismo , Femenino , Masculino , Ratones , Microscopía de Fluorescencia por Excitación Multifotónica , Óxido Nítrico Sintasa de Tipo III/deficiencia , Óxido Nítrico Sintasa de Tipo III/metabolismo , Vasodilatación , Vibrisas/fisiología
4.
Genes Dev ; 32(7-8): 466-478, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29692355

RESUMEN

The blood-brain barrier (BBB) restricts free access of molecules between the blood and the brain and is essential for regulating the neural microenvironment. Here, we describe how the BBB was initially characterized and how the current field evaluates barrier properties. We next detail the cellular nature of the BBB and discuss both the conservation and variation of BBB function across taxa. Finally, we examine our current understanding of mouse and zebrafish model systems, as we expect that comparison of the BBB across organisms will provide insight into the human BBB under normal physiological conditions and in neurological diseases.


Asunto(s)
Barrera Hematoencefálica/citología , Barrera Hematoencefálica/metabolismo , Animales , Astrocitos/fisiología , Encéfalo/fisiología , Permeabilidad de la Membrana Celular , Células Endoteliales/metabolismo , Evolución Molecular , Humanos , Ratones , Pericitos/fisiología , Pez Cebra/metabolismo
5.
Nat Rev Neurosci ; 21(8): 416-432, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32636528

RESUMEN

To continuously process neural activity underlying sensation, movement and cognition, the CNS requires a homeostatic microenvironment that is not only enriched in nutrients to meet its high metabolic demands but that is also devoid of toxins that might harm the sensitive neural tissues. This highly regulated microenvironment is made possible by two unique features of CNS vasculature absent in the peripheral organs. First, the blood-blood barrier, which partitions the circulating blood from the CNS, acts as a gatekeeper to facilitate the selective trafficking of substances between the blood and the parenchyma. Second, neurovascular coupling ensures that, following local neural activation, regional blood flow is increased to quickly supply more nutrients and remove metabolic waste. Here, we review how neural and vascular activity act on one another with regard to these two properties.


Asunto(s)
Barrera Hematoencefálica/fisiología , Encéfalo/irrigación sanguínea , Encéfalo/fisiología , Neuronas/fisiología , Acoplamiento Neurovascular/fisiología , Animales , Humanos , Modelos Neurológicos
6.
Stroke ; 54(6): e251-e271, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37009740

RESUMEN

BACKGROUND: Preservation of brain health has emerged as a leading public health priority for the aging world population. Advances in neurovascular biology have revealed an intricate relationship among brain cells, meninges, and the hematic and lymphatic vasculature (the neurovasculome) that is highly relevant to the maintenance of cognitive function. In this scientific statement, a multidisciplinary team of experts examines these advances, assesses their relevance to brain health and disease, identifies knowledge gaps, and provides future directions. METHODS: Authors with relevant expertise were selected in accordance with the American Heart Association conflict-of-interest management policy. They were assigned topics pertaining to their areas of expertise, reviewed the literature, and summarized the available data. RESULTS: The neurovasculome, composed of extracranial, intracranial, and meningeal vessels, as well as lymphatics and associated cells, subserves critical homeostatic functions vital for brain health. These include delivering O2 and nutrients through blood flow and regulating immune trafficking, as well as clearing pathogenic proteins through perivascular spaces and dural lymphatics. Single-cell omics technologies have unveiled an unprecedented molecular heterogeneity in the cellular components of the neurovasculome and have identified novel reciprocal interactions with brain cells. The evidence suggests a previously unappreciated diversity of the pathogenic mechanisms by which disruption of the neurovasculome contributes to cognitive dysfunction in neurovascular and neurodegenerative diseases, providing new opportunities for the prevention, recognition, and treatment of these conditions. CONCLUSIONS: These advances shed new light on the symbiotic relationship between the brain and its vessels and promise to provide new diagnostic and therapeutic approaches for brain disorders associated with cognitive dysfunction.


Asunto(s)
Disfunción Cognitiva , Accidente Cerebrovascular , Estados Unidos , Humanos , American Heart Association , Accidente Cerebrovascular/terapia , Encéfalo , Cognición
7.
Annu Rev Neurosci ; 38: 25-46, 2015 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-25782970

RESUMEN

The brain, which represents 2% of body mass but consumes 20% of body energy at rest, has a limited capacity to store energy and is therefore highly dependent on oxygen and glucose supply from the blood stream. Normal functioning of neural circuits thus relies on adequate matching between metabolic needs and blood supply. Moreover, not only does the brain need to be densely vascularized, it also requires a tightly controlled environment free of toxins and pathogens to provide the proper chemical composition for synaptic transmission and neuronal function. In this review, we focus on three major factors that ensure optimal brain perfusion and function: the patterning of vascular networks to efficiently deliver blood and nutrients, the function of the blood-brain barrier to maintain brain homeostasis, and the regulation of cerebral blood flow to adequately couple energy supply to neural function.


Asunto(s)
Encéfalo/irrigación sanguínea , Encéfalo/citología , Neuronas/fisiología , Animales , Barrera Hematoencefálica/fisiología , Encéfalo/fisiología , Homeostasis/fisiología , Humanos
8.
Nature ; 509(7501): 507-11, 2014 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-24828040

RESUMEN

The central nervous system (CNS) requires a tightly controlled environment free of toxins and pathogens to provide the proper chemical composition for neural function. This environment is maintained by the 'blood-brain barrier' (BBB), which is composed of blood vessels whose endothelial cells display specialized tight junctions and extremely low rates of transcellular vesicular transport (transcytosis). In concert with pericytes and astrocytes, this unique brain endothelial physiological barrier seals the CNS and controls substance influx and efflux. Although BBB breakdown has recently been associated with initiation and perpetuation of various neurological disorders, an intact BBB is a major obstacle for drug delivery to the CNS. A limited understanding of the molecular mechanisms that control BBB formation has hindered our ability to manipulate the BBB in disease and therapy. Here we identify mechanisms governing the establishment of a functional BBB. First, using a novel tracer-injection method for embryos, we demonstrate spatiotemporal developmental profiles of BBB functionality and find that the mouse BBB becomes functional at embryonic day 15.5 (E15.5). We then screen for BBB-specific genes expressed during BBB formation, and find that major facilitator super family domain containing 2a (Mfsd2a) is selectively expressed in BBB-containing blood vessels in the CNS. Genetic ablation of Mfsd2a results in a leaky BBB from embryonic stages through to adulthood, but the normal patterning of vascular networks is maintained. Electron microscopy examination reveals a dramatic increase in CNS-endothelial-cell vesicular transcytosis in Mfsd2a(-/-) mice, without obvious tight-junction defects. Finally we show that Mfsd2a endothelial expression is regulated by pericytes to facilitate BBB integrity. These findings identify Mfsd2a as a key regulator of BBB function that may act by suppressing transcytosis in CNS endothelial cells. Furthermore, our findings may aid in efforts to develop therapeutic approaches for CNS drug delivery.


Asunto(s)
Barrera Hematoencefálica/embriología , Barrera Hematoencefálica/fisiología , Proteínas de Transporte de Membrana/metabolismo , Animales , Vasos Sanguíneos/metabolismo , Corteza Cerebral/irrigación sanguínea , Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Sistemas de Liberación de Medicamentos , Células Endoteliales/metabolismo , Femenino , Perfilación de la Expresión Génica , Masculino , Proteínas de Transporte de Membrana/deficiencia , Proteínas de Transporte de Membrana/genética , Ratones , Neovascularización Fisiológica , Pericitos/metabolismo , Análisis Espacio-Temporal , Simportadores , Uniones Estrechas/metabolismo , Uniones Estrechas/patología , Transcitosis
9.
Ann Neurol ; 84(3): 409-423, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30014540

RESUMEN

OBJECTIVE: Cortical spreading depolarizations (CSDs) are intense and ubiquitous depolarization waves relevant for the pathophysiology of migraine and brain injury. CSDs disrupt the blood-brain barrier (BBB), but the mechanisms are unknown. METHODS: A total of six CSDs were evoked over 1 hour by topical application of 300 mM of KCl or optogenetically with 470 nm (blue) LED over the right hemisphere in anesthetized mice (C57BL/6 J wild type, Thy1-ChR2-YFP line 18, and cav-1-/- ). BBB disruption was assessed by Evans blue (2% EB, 3 ml/kg, intra-arterial) or dextran (200 mg/kg, fluorescein, 70,000 MW, intra-arterial) extravasation in parietotemporal cortex at 3 to 24 hours after CSD. Endothelial cell ultrastructure was examined using transmission electron microscopy 0 to 24 hours after the same CSD protocol in order to assess vesicular trafficking, endothelial tight junctions, and pericyte integrity. Mice were treated with vehicle, isoform nonselective rho-associated kinase (ROCK) inhibitor fasudil (10 mg/kg, intraperitoneally 30 minutes before CSD), or ROCK-2 selective inhibitor KD025 (200 mg/kg, per oral twice-daily for 5 doses before CSD). RESULTS: We show that CSD-induced BBB opening to water and large molecules is mediated by increased endothelial transcytosis starting between 3 and 6 hours and lasting approximately 24 hours. Endothelial tight junctions, pericytes, and basement membrane remain preserved after CSDs. Moreover, we show that CSD-induced BBB disruption is exclusively caveolin-1-dependent and requires rho-kinase 2 activity. Importantly, hyperoxia failed to prevent CSD-induced BBB breakdown, suggesting that the latter is independent of tissue hypoxia. INTERPRETATION: Our data elucidate the mechanisms by which CSDs lead to transient BBB disruption, with diagnostic and therapeutic implications for migraine and brain injury.


Asunto(s)
Caveolina 1/metabolismo , Endotelio/metabolismo , Pericitos/metabolismo , Transcitosis/fisiología , Animales , Barrera Hematoencefálica/metabolismo , Depresión de Propagación Cortical/genética , Depresión de Propagación Cortical/fisiología , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Trastornos Migrañosos/metabolismo , Uniones Estrechas/metabolismo
10.
Genes Dev ; 25(13): 1399-411, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21724832

RESUMEN

Blood vessel networks are typically formed by angiogenesis, a process in which new vessels form by sprouting of endothelial cells from pre-existing vessels. This process is initiated by vascular endothelial growth factor (VEGF)-mediated tip cell selection and subsequent angiogenic sprouting. Surprisingly, we found that VEGF directly controls the expression of Plexin-D1, the receptor for the traditional repulsive axon guidance cue, semaphorin 3E (Sema3E). Sema3E-Plexin-D1 signaling then negatively regulates the activity of the VEGF-induced Delta-like 4 (Dll4)-Notch signaling pathway, which controls the cell fate decision between tip and stalk cells. Using the mouse retina as a model system, we show that Plexin-D1 is selectively expressed in endothelial cells at the front of actively sprouting blood vessels and its expression is tightly controlled by VEGF secreted by surrounding tissues. Therefore, although the Sema3E secreted by retinal neurons is evenly distributed throughout the retina, Sema3E-Plexin-D1 signaling is spatially controlled by VEGF through its regulation of Plexin-D1. Moreover, we show that gain and loss of function of Sema3E and Plexin-D1 disrupts normal Dll4 expression, Notch activity, and tip/stalk cell distribution in the retinal vasculature. Finally, the retinal vasculature of mice lacking sema3E or plexin-D1 has an uneven growing front, a less-branched vascular network, and abnormal distribution of dll4-positive cells. Lowering Notch activity in the mutant mice can reverse this defect, solidifying the observation that Dll4-Notch signaling is regulated by Sema3E-Plexin-D1 and is required for its function in vivo. Together, these data reveal a novel role of Sema3E-Plexin-D1 function in modulating angiogenesis via a VEGF-induced feedback mechanism.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Retroalimentación Fisiológica/fisiología , Regulación del Desarrollo de la Expresión Génica , Neovascularización Fisiológica/fisiología , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Moléculas de Adhesión Celular Neuronal/genética , Línea Celular , Células Endoteliales/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Glicoproteínas de Membrana , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Mutación , Neovascularización Fisiológica/genética , Proteínas del Tejido Nervioso , Fenotipo , Receptores Notch/metabolismo , Retina/citología , Retina/embriología , Células Ganglionares de la Retina/metabolismo , Semaforinas/genética , Semaforinas/metabolismo
11.
Pattern Recognit ; 63: 710-718, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28566796

RESUMEN

To simultaneously overcome the challenges imposed by the nature of optical imaging characterized by a range of artifacts including space-varying signal to noise ratio (SNR), scattered light, and non-uniform illumination, we developed a novel method that segments the 3-D vasculature directly from original fluorescence microscopy images eliminating the need for employing pre- and post-processing steps such as noise removal and segmentation refinement as used with the majority of segmentation techniques. Our method comprises two initialization and constrained recovery and enhancement stages. The initialization approach is fully automated using features derived from bi-scale statistical measures and produces seed points robust to non-uniform illumination, low SNR, and local structural variations. This algorithm achieves the goal of segmentation via design of an iterative approach that extracts the structure through voting of feature vectors formed by distance, local intensity gradient, and median measures. Qualitative and quantitative analysis of the experimental results obtained from synthetic and real data prove the effcacy of this method in comparison to the state-of-the-art enhancing-segmenting methods. The algorithmic simplicity, freedom from having a priori probabilistic information about the noise, and structural definition gives this algorithm a wide potential range of applications where i.e. structural complexity significantly complicates the segmentation problem.

12.
J Neurosci ; 34(25): 8557-69, 2014 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-24948810

RESUMEN

The motor and learning functions of the striatum are critically dependent on synaptic transmission from midbrain dopamine neurons and striatal cholinergic interneurons (CINs). Both neural populations alter their discharge in vivo in response to salient sensory stimuli, albeit in opposite directions. Whereas midbrain dopamine neurons respond to salient stimuli with a brief burst of activity, CINs exhibit a distinct pause in firing that is often followed by a period of increased excitability. Although this "pause-rebound" sensory response requires dopaminergic signaling, the precise mechanisms underlying the modulation of CIN firing by dopaminergic afferents remain unclear. Here, we show that phasic activation of nigrostriatal afferents in a mouse striatal slice preparation is sufficient to evoke a pause-rebound response in CINs. Using a combination of optogenetic, electrophysiological, and pharmacological approaches, we demonstrate that synaptically released dopamine inhibits CINs through type 2 dopamine receptors, while another unidentified transmitter mediates the delayed excitation. These findings imply that, in addition to their direct effects on striatal projection neurons, midbrain dopamine neurons indirectly modulate striatal output by dynamically controlling cholinergic tone. In addition, our data suggest that phasic dopaminergic activity may directly participate in the characteristic pause-rebound sensory response that CINs exhibit in vivo in response to salient and conditioned stimuli.


Asunto(s)
Potenciales de Acción/fisiología , Neuronas Colinérgicas/metabolismo , Cuerpo Estriado/fisiología , Interneuronas/fisiología , Sustancia Negra/fisiología , Vías Aferentes/fisiología , Animales , Neuronas Colinérgicas/fisiología , Femenino , Técnicas de Sustitución del Gen , Masculino , Ratones , Ratones Transgénicos
13.
Semin Cell Dev Biol ; 24(3): 156-62, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23270617

RESUMEN

Class 3 secreted semaphorins (Sema3A-3G) participate in many aspects of axon guidance through holoreceptor complexes that include Neuropilin-1 (Npn-1) or Neuropilin-2 and one of the four class A plexin proteins. However, unlike other Sema3 family proteins, Sema3E directly binds to Plexin-D1 without neuropilins. Its biological function was first explored in intersomitic vessel formation and since its initial discovery, Sema3E-Plexin-D1 signaling has been found to participate in the many biological systems in addition to vascular development, via seemingly different mode of actions. For example, temporal and spatial control of ligand vs. receptor results in two different mechanisms governing vascular patterning. Interactions with other transmembrane proteins such as neuropilin and VEGFR2 result in different axonal behaviors. Ligand receptor localization on pre- vs. post-synaptic neurons is used to control different types of synapse formation. Perhaps different downstream effectors will also result in different functional outcomes. Given the limited number of ligands and receptors in the genome and their multifunctional nature, we expect that more modes of action will be discovered in the future. In this review, we highlight current advances on the mechanisms of how Sema3E-Plexin-D1 interaction shapes the networks of multiple biological systems, in particular the vascular and nervous systems.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Sistema Nervioso Central/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Semaforinas/metabolismo , Animales , Sistema Nervioso Central/irrigación sanguínea , Humanos , Neovascularización Patológica , Neovascularización Fisiológica , Semaforinas/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
14.
Exp Cell Res ; 319(9): 1306-16, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23422037

RESUMEN

Semaphorins (Semas) are a large family of traditional axon guidance molecules. Through interactions with their receptors, Plexins and Neuropilins, Semas play critical roles in a continuously growing list of diverse biological systems. In this review, we focus on their function in regulating vascular development. In addition, over the past few years a number of findings have shown the crucial role that Semas and their receptors play in the regulation of cancer progression and tumor angiogenesis. In particular, Semas control tumor progression by directly influencing the behavior of cancer cells or, indirectly, by modulating angiogenesis and the function of other cell types in the tumor microenvironment (i.e., inflammatory cells and fibroblasts). Some Semas can activate or inhibit tumor progression and angiogenesis, while others may have the opposite effect depending on specific post-translational modifications. Here we will also discuss the diverse biological effects of Semas and their receptor complexes on cancer progression as well as their impact on the tumor microenvironment.


Asunto(s)
Neoplasias/irrigación sanguínea , Neovascularización Patológica/metabolismo , Semaforinas/fisiología , Animales , Moléculas de Adhesión Celular/metabolismo , Humanos , Neoplasias/inmunología , Neoplasias/patología , Neovascularización Fisiológica , Proteínas del Tejido Nervioso/metabolismo , Neuropilinas/metabolismo , Transducción de Señal , Microambiente Tumoral
15.
Artículo en Inglés | MEDLINE | ID: mdl-38951020

RESUMEN

Blood vessels are critical to deliver oxygen and nutrients to tissues and organs throughout the body. The blood vessels that vascularize the central nervous system (CNS) possess unique properties, termed the blood-brain barrier (BBB), which allow these vessels to tightly regulate the movement of ions, molecules, and cells between the blood and the brain. This precise control of CNS homeostasis allows for proper neuronal function and protects the neural tissue from toxins and pathogens, and alterations of this barrier are important components of the pathogenesis and progression of various neurological diseases. The physiological barrier is coordinated by a series of physical, transport, and metabolic properties possessed by the brain endothelial cells (ECs) that form the walls of the blood vessels. These properties are regulated by interactions between different vascular, perivascular, immune, and neural cells. Understanding how these cell populations interact to regulate barrier properties is essential for understanding how the brain functions in both health and disease contexts.

16.
Dev Cell ; 58(17): 1534-1547.e6, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37437574

RESUMEN

The blood-brain barrier (BBB) is a unique set of properties of the brain vasculature which severely restrict its permeability to proteins and small molecules. Classic chick-quail chimera studies have shown that these properties are not intrinsic to the brain vasculature but rather are induced by surrounding neural tissue. Here, we identify Spock1 as a candidate neuronal signal for regulating BBB permeability in zebrafish and mice. Mosaic genetic analysis shows that neuronally expressed Spock1 is cell non-autonomously required for a functional BBB. Leakage in spock1 mutants is associated with altered extracellular matrix (ECM), increased endothelial transcytosis, and altered pericyte-endothelial interactions. Furthermore, a single dose of recombinant SPOCK1 partially restores BBB function in spock1 mutants by quenching gelatinase activity and restoring vascular expression of BBB genes including mcamb. These analyses support a model in which neuronally secreted Spock1 initiates BBB properties by altering the ECM, thereby regulating pericyte-endothelial interactions and downstream vascular gene expression.


Asunto(s)
Barrera Hematoencefálica , Proteoglicanos , Pez Cebra , Animales , Ratones , Transporte Biológico , Barrera Hematoencefálica/metabolismo , Encéfalo , Endotelio/metabolismo , Proteoglicanos/metabolismo
17.
Neuron ; 110(10): 1641-1655.e6, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35294899

RESUMEN

Endothelial cells of blood vessels of the central nervous system (CNS) constitute blood-CNS barriers. Barrier properties are not intrinsic to these cells; rather they are induced and maintained by CNS microenvironment. Notably, the abluminal surfaces of CNS capillaries are ensheathed by pericytes and astrocytes. However, extrinsic factors from these perivascular cells that regulate barrier integrity are largely unknown. Here, we establish vitronectin, an extracellular matrix protein secreted by CNS pericytes, as a regulator of blood-CNS barrier function via interactions with its integrin receptor, α5, in endothelial cells. Genetic ablation of vitronectin or mutating vitronectin to prevent integrin binding, as well as endothelial-specific deletion of integrin α5, causes barrier leakage in mice. Furthermore, vitronectin-integrin α5 signaling maintains barrier integrity by actively inhibiting transcytosis in endothelial cells. These results demonstrate that signaling from perivascular cells to endothelial cells via ligand-receptor interactions is a key mechanism to regulate barrier permeability.


Asunto(s)
Células Endoteliales , Pericitos , Animales , Barrera Hematoencefálica/metabolismo , Sistema Nervioso Central/metabolismo , Células Endoteliales/metabolismo , Integrina alfa5/metabolismo , Integrinas/metabolismo , Ratones , Pericitos/fisiología , Vitronectina/metabolismo
18.
Nat Cardiovasc Res ; 1(4): 389-400, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35571675

RESUMEN

Endothelial cells have a crucial role in nervous system function, and mounting evidence points to endothelial impairment as a major contributor to a wide range of neurological diseases. However, tools to genetically interrogate these cells in vivo remain limited. Here, we describe AAV-BI30, a capsid that specifically and efficiently transduces endothelial cells throughout the central nervous system. At relatively low systemic doses, this vector transduces the majority of arterial, capillary, and venous endothelial cells in the brain, retina, and spinal cord vasculature of adult C57BL/6 mice. Furthermore, we show that AAV-BI30 robustly transduces endothelial cells in multiple mouse strains and rats in vivo and human brain microvascular endothelial cells in vitro. Finally, we demonstrate AAV-BI30's capacity to achieve efficient and endothelial-specific Cre-mediated gene manipulation in the central nervous system. This combination of attributes makes AAV-BI30 uniquely well-suited to address outstanding research questions in neurovascular biology and aid the development of therapeutics to remediate endothelial dysfunction in disease.

19.
ACS Chem Biol ; 16(1): 106-115, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33315366

RESUMEN

The cell membrane of brain endothelial cells is enriched in omega-3 phospholipid species. Numerous omega-3 phospholipid species were recently proposed to be important for maintaining the low rate of transcytosis and, thus, could be important for regulating one of the mechanisms of the blood brain barrier (BBB). However, the spatial distribution of these phospholipid species within the brain was previously unknown. Here, we combined advanced mass spectrometry imaging techniques to generate a map of these phospholipids in the brain at near single cell resolution. Furthermore, we explored the effects of omega-3 dietary deprivation on both docosahexaenoic acid (DHA)-containing phospholipids and the global brain phospholipid profile. We demonstrate the unique spatial distribution of individual DHA-containing phospholipids, which may be important for the regiospecific properties of the BBB. Finally, 24 diet discriminative phospholipids were identified and showed an increase in saturated phospholipid species and ceramide containing phospholipid species under omega-3 dietary deficiency.


Asunto(s)
Ácidos Grasos Omega-3/metabolismo , Fosfolípidos/farmacología , Transcitosis/efectos de los fármacos , Animales , Barrera Hematoencefálica , Femenino , Masculino , Ratones , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
20.
Cereb Cortex ; 19 Suppl 1: i11-21, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19357391

RESUMEN

Pioneer axons from the cingulate cortex initiate corpus callosum (CC) development, yet nothing is known about the molecules that regulate their guidance. We demonstrate that neuropilin 1 (Npn1) plays an integral role in the development of the CC. Npn1 is localized to axons of cingulate neurons as they cross the midline, and multiple class 3 semaphorins (Semas) are expressed around the developing CC, implicating these guidance molecules in the regulation of Npn1-expressing axons emanating from the cingulate cortex. Furthermore, axons from the cingulate cortex display guidance errors in Npn1(Sema-) mice, a knockin mouse line in which Npn1 is unable to bind Semas. Analysis of mice deficient in the transcription factor Emx2 demonstrated that the cingulate cortex of these mice was significantly reduced in comparison to wild-type controls at E17 and that the CC was absent in rostral sections. Expression of Npn1 was absent in rostral sections of Emx2 mutants, suggesting that Npn1-expressing cingulate pioneers are required for CC formation. These data highlight a central role for Npn1 in the development of projections from the cingulate cortex and further illustrate the importance of these pioneer axons in the formation of the CC.


Asunto(s)
Axones/fisiología , Cuerpo Calloso/embriología , Cuerpo Calloso/metabolismo , Giro del Cíngulo/fisiología , Neuropilina-1/metabolismo , Transducción de Señal/fisiología , Animales , Cuerpo Calloso/crecimiento & desarrollo , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA