Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 167(5): 1310-1322.e17, 2016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27863245

RESUMEN

Stem cells determine homeostasis and repair of many tissues and are increasingly recognized as functionally heterogeneous. To define the extent of-and molecular basis for-heterogeneity, we overlaid functional, transcriptional, and epigenetic attributes of hematopoietic stem cells (HSCs) at a clonal level using endogenous fluorescent tagging. Endogenous HSC had clone-specific functional attributes over time in vivo. The intra-clonal behaviors were highly stereotypic, conserved under the stress of transplantation, inflammation, and genotoxic injury, and associated with distinctive transcriptional, DNA methylation, and chromatin accessibility patterns. Further, HSC function corresponded to epigenetic configuration but not always to transcriptional state. Therefore, hematopoiesis under homeostatic and stress conditions represents the integrated action of highly heterogeneous clones of HSC with epigenetically scripted behaviors. This high degree of epigenetically driven cell autonomy among HSCs implies that refinement of the concepts of stem cell plasticity and of the stem cell niche is warranted.


Asunto(s)
Epigenómica , Células Madre Hematopoyéticas/citología , Animales , Linaje de la Célula , Células Clonales/citología , Fluorescencia , Hematopoyesis , Inflamación/patología , Ratones , Transcripción Genética
2.
Cell ; 153(5): 1149-63, 2013 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-23664763

RESUMEN

Differentiation of human embryonic stem cells (hESCs) provides a unique opportunity to study the regulatory mechanisms that facilitate cellular transitions in a human context. To that end, we performed comprehensive transcriptional and epigenetic profiling of populations derived through directed differentiation of hESCs representing each of the three embryonic germ layers. Integration of whole-genome bisulfite sequencing, chromatin immunoprecipitation sequencing, and RNA sequencing reveals unique events associated with specification toward each lineage. Lineage-specific dynamic alterations in DNA methylation and H3K4me1 are evident at putative distal regulatory elements that are frequently bound by pluripotency factors in the undifferentiated hESCs. In addition, we identified germ-layer-specific H3K27me3 enrichment at sites exhibiting high DNA methylation in the undifferentiated state. A better understanding of these initial specification events will facilitate identification of deficiencies in current approaches, leading to more faithful differentiation strategies as well as providing insights into the rewiring of human regulatory programs during cellular transitions.


Asunto(s)
Células Madre Embrionarias/metabolismo , Epigénesis Genética , Transcripción Genética , Acetilación , Diferenciación Celular , Cromatina/química , Cromatina/metabolismo , Metilación de ADN , Elementos de Facilitación Genéticos , Histonas/metabolismo , Humanos , Metilación
4.
Cell ; 144(3): 439-52, 2011 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-21295703

RESUMEN

The developmental potential of human pluripotent stem cells suggests that they can produce disease-relevant cell types for biomedical research. However, substantial variation has been reported among pluripotent cell lines, which could affect their utility and clinical safety. Such cell-line-specific differences must be better understood before one can confidently use embryonic stem (ES) or induced pluripotent stem (iPS) cells in translational research. Toward this goal we have established genome-wide reference maps of DNA methylation and gene expression for 20 previously derived human ES lines and 12 human iPS cell lines, and we have measured the in vitro differentiation propensity of these cell lines. This resource enabled us to assess the epigenetic and transcriptional similarity of ES and iPS cells and to predict the differentiation efficiency of individual cell lines. The combination of assays yields a scorecard for quick and comprehensive characterization of pluripotent cell lines.


Asunto(s)
Metilación de ADN , Células Madre Embrionarias/fisiología , Perfilación de la Expresión Génica/normas , Células Madre Pluripotentes Inducidas/fisiología , Diferenciación Celular , Línea Celular , Células Madre Embrionarias/citología , Humanos , Células Madre Pluripotentes Inducidas/citología
5.
Cell ; 143(7): 1084-96, 2010 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-21183072

RESUMEN

Epigenetic information can be inherited through the mammalian germline and represents a plausible transgenerational carrier of environmental information. To test whether transgenerational inheritance of environmental information occurs in mammals, we carried out an expression profiling screen for genes in mice that responded to paternal diet. Offspring of males fed a low-protein diet exhibited elevated hepatic expression of many genes involved in lipid and cholesterol biosynthesis and decreased levels of cholesterol esters, relative to the offspring of males fed a control diet. Epigenomic profiling of offspring livers revealed numerous modest (∼20%) changes in cytosine methylation depending on paternal diet, including reproducible changes in methylation over a likely enhancer for the key lipid regulator Ppara. These results, in conjunction with recent human epidemiological data, indicate that parental diet can affect cholesterol and lipid metabolism in offspring and define a model system to study environmental reprogramming of the heritable epigenome.


Asunto(s)
Metilación de ADN , Dieta con Restricción de Proteínas , Impresión Genómica , Metabolismo de los Lípidos , Animales , Vías Biosintéticas , Colesterol/biosíntesis , Citosina/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Humanos , Hígado/metabolismo , Masculino , Ratones
7.
Nature ; 569(7757): 576-580, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31092926

RESUMEN

Genetic and epigenetic intra-tumoral heterogeneity cooperate to shape the evolutionary course of cancer1. Chronic lymphocytic leukaemia (CLL) is a highly informative model for cancer evolution as it undergoes substantial genetic diversification and evolution after therapy2,3. The CLL epigenome is also an important disease-defining feature4,5, and growing populations of cells in CLL diversify by stochastic changes in DNA methylation known as epimutations6. However, previous studies using bulk sequencing methods to analyse the patterns of DNA methylation were unable to determine whether epimutations affect CLL populations homogeneously. Here, to measure the epimutation rate at single-cell resolution, we applied multiplexed single-cell reduced-representation bisulfite sequencing to B cells from healthy donors and patients with CLL. We observed that the common clonal origin of CLL results in a consistently increased epimutation rate, with low variability in the cell-to-cell epimutation rate. By contrast, variable epimutation rates across healthy B cells reflect diverse evolutionary ages across the trajectory of B cell differentiation, consistent with epimutations serving as a molecular clock. Heritable epimutation information allowed us to reconstruct lineages at high-resolution with single-cell data, and to apply this directly to patient samples. The CLL lineage tree shape revealed earlier branching and longer branch lengths than in normal B cells, reflecting rapid drift after the initial malignant transformation and a greater proliferative history. Integration of single-cell bisulfite sequencing analysis with single-cell transcriptomes and genotyping confirmed that genetic subclones mapped to distinct clades, as inferred solely on the basis of epimutation information. Finally, to examine potential lineage biases during therapy, we profiled serial samples during ibrutinib-associated lymphocytosis, and identified clades of cells that were preferentially expelled from the lymph node after treatment, marked by distinct transcriptional profiles. The single-cell integration of genetic, epigenetic and transcriptional information thus charts the lineage history of CLL and its evolution with therapy.


Asunto(s)
Linaje de la Célula , Epigénesis Genética , Evolución Molecular , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/patología , Secuencia de Bases , Relojes Biológicos , Linaje de la Célula/genética , Metilación de ADN , Epigenoma/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Leucemia Linfocítica Crónica de Células B/metabolismo , Tasa de Mutación , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Transcripción Genética
8.
Clin Chem Lab Med ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38443752

RESUMEN

Cancer continues to pose significant challenges to the medical community. Early detection, accurate molecular profiling, and adequate assessment of treatment response are critical factors in improving the quality of life and survival of cancer patients. Accumulating evidence shows that circulating tumor DNA (ctDNA) shed by tumors into the peripheral blood preserves the genetic and epigenetic information of primary tumors. Notably, DNA methylation, an essential and stable epigenetic modification, exhibits both cancer- and tissue-specific patterns. As a result, ctDNA methylation has emerged as a promising molecular marker for noninvasive testing in cancer clinics. In this review, we summarize the existing techniques for ctDNA methylation detection, describe the current research status of ctDNA methylation, and present the potential applications of ctDNA-based assays in the clinic. The insights presented in this article could serve as a roadmap for future research and clinical applications of ctDNA methylation.

9.
Nature ; 549(7673): 543-547, 2017 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-28959968

RESUMEN

In mammals, the canonical somatic DNA methylation landscape is established upon specification of the embryo proper and subsequently disrupted within many cancer types. However, the underlying mechanisms that direct this genome-scale transformation remain elusive, with no clear model for its systematic acquisition or potential developmental utility. Here, we analysed global remethylation from the mouse preimplantation embryo into the early epiblast and extraembryonic ectoderm. We show that these two states acquire highly divergent genomic distributions with substantial disruption of bimodal, CpG density-dependent methylation in the placental progenitor. The extraembryonic epigenome includes specific de novo methylation at hundreds of embryonically protected CpG island promoters, particularly those that are associated with key developmental regulators and are orthologously methylated across most human cancer types. Our data suggest that the evolutionary innovation of extraembryonic tissues may have required co-option of DNA methylation-based suppression as an alternative to regulation by Polycomb-group proteins, which coordinate embryonic germ-layer formation in response to extraembryonic cues. Moreover, we establish that this decision is made deterministically, downstream of promiscuously used-and frequently oncogenic-signalling pathways, via a novel combination of epigenetic cofactors. Methylation of developmental gene promoters during tumorigenesis may therefore reflect the misappropriation of an innate trajectory and the spontaneous reacquisition of a latent, developmentally encoded epigenetic landscape.


Asunto(s)
Blastocisto/citología , Linaje de la Célula/genética , Metilación de ADN , Ectodermo/metabolismo , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Estratos Germinativos/metabolismo , Neoplasias/genética , Animales , Blastocisto/metabolismo , Islas de CpG/genética , Ectodermo/citología , Femenino , Regulación Neoplásica de la Expresión Génica , Estratos Germinativos/citología , Humanos , Masculino , Ratones , Neoplasias/patología , Placenta/citología , Embarazo , Regiones Promotoras Genéticas
10.
Nature ; 548(7666): 219-223, 2017 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-28746311

RESUMEN

Concomitant activation of the Wnt pathway and suppression of Mapk signalling by two small molecule inhibitors (2i) in the presence of leukaemia inhibitory factor (LIF) (hereafter termed 2i/L) induces a naive state in mouse embryonic stem (ES) cells that resembles the inner cell mass (ICM) of the pre-implantation embryo. Since the ICM exists only transiently in vivo, it remains unclear how sustained propagation of naive ES cells in vitro affects their stability and functionality. Here we show that prolonged culture of male mouse ES cells in 2i/L results in irreversible epigenetic and genomic changes that impair their developmental potential. Furthermore, we find that female ES cells cultured in conventional serum plus LIF medium phenocopy male ES cells cultured in 2i/L. Mechanistically, we demonstrate that the inhibition of Mek1/2 is predominantly responsible for these effects, in part through the downregulation of DNA methyltransferases and their cofactors. Finally, we show that replacement of the Mek1/2 inhibitor with a Src inhibitor preserves the epigenetic and genomic integrity as well as the developmental potential of ES cells. Taken together, our data suggest that, although short-term suppression of Mek1/2 in ES cells helps to maintain an ICM-like epigenetic state, prolonged suppression results in irreversible changes that compromise their developmental potential.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Embrionarias/enzimología , MAP Quinasa Quinasa 1/antagonistas & inhibidores , MAP Quinasa Quinasa 2/antagonistas & inhibidores , Animales , Blastocisto , Inestabilidad Cromosómica , Metilación de ADN , Femenino , Impresión Genómica , Cariotipificación , Masculino , Ratones
11.
Nature ; 539(7629): 390-395, 2016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27799657

RESUMEN

Intermediary metabolism generates substrates for chromatin modification, enabling the potential coupling of metabolic and epigenetic states. Here we identify a network linking metabolic and epigenetic alterations that is central to oncogenic transformation downstream of the liver kinase B1 (LKB1, also known as STK11) tumour suppressor, an integrator of nutrient availability, metabolism and growth. By developing genetically engineered mouse models and primary pancreatic epithelial cells, and employing transcriptional, proteomics, and metabolic analyses, we find that oncogenic cooperation between LKB1 loss and KRAS activation is fuelled by pronounced mTOR-dependent induction of the serine-glycine-one-carbon pathway coupled to S-adenosylmethionine generation. At the same time, DNA methyltransferases are upregulated, leading to elevation in DNA methylation with particular enrichment at retrotransposon elements associated with their transcriptional silencing. Correspondingly, LKB1 deficiency sensitizes cells and tumours to inhibition of serine biosynthesis and DNA methylation. Thus, we define a hypermetabolic state that incites changes in the epigenetic landscape to support tumorigenic growth of LKB1-mutant cells, while resulting in potential therapeutic vulnerabilities.


Asunto(s)
Transformación Celular Neoplásica , Metilación de ADN , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/metabolismo , Serina/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas Quinasas Activadas por AMP , Animales , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Células Epiteliales/metabolismo , Silenciador del Gen , Genes Supresores de Tumor , Glicina/metabolismo , Glucólisis , Humanos , Ratones , Conductos Pancreáticos/citología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Retroelementos/genética , S-Adenosilmetionina/metabolismo , Serina/biosíntesis , Serina-Treonina Quinasas TOR/metabolismo , Transaminasas/metabolismo
12.
Development ; 145(22)2018 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-30337375

RESUMEN

Advances in stem cell science allow the production of different cell types in vitro either through the recapitulation of developmental processes, often termed 'directed differentiation', or the forced expression of lineage-specific transcription factors. Although cells produced by both approaches are increasingly used in translational applications, their quantitative similarity to their primary counterparts remains largely unresolved. To investigate the similarity between in vitro-derived and primary cell types, we harvested and purified mouse spinal motor neurons and compared them with motor neurons produced by transcription factor-mediated lineage conversion of fibroblasts or directed differentiation of pluripotent stem cells. To enable unbiased analysis of these motor neuron types and their cells of origin, we then subjected them to whole transcriptome and DNA methylome analysis by RNA sequencing (RNA-seq) and reduced representation bisulfite sequencing (RRBS). Despite major differences in methodology, lineage conversion and directed differentiation both produce cells that closely approximate the primary motor neuron state. However, we identify differences in Fas signaling, the Hox code and synaptic gene expression between lineage-converted and directed differentiation motor neurons that affect their utility in translational studies.


Asunto(s)
Linaje de la Célula/genética , Embrión de Mamíferos/citología , Genómica , Neuronas Motoras/citología , Células Madre Pluripotentes/citología , Animales , Epigénesis Genética , Ratones Endogámicos C57BL , Neuronas Motoras/metabolismo , Células Madre Pluripotentes/metabolismo , Transcripción Genética
13.
Nat Methods ; 15(9): 732-740, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30127506

RESUMEN

Human embryonic stem cells (hESCs) can be captured in a primed state in which they resemble the postimplantation epiblast, or in a naive state where they resemble the preimplantation epiblast. Naive-cell-specific culture conditions allow the study of preimplantation development ex vivo but reportedly lead to chromosomal abnormalities, which compromises their utility in research and potential therapeutic applications. Although MEK inhibition is essential for the naive state, here we show that reduced MEK inhibition facilitated the establishment and maintenance of naive hESCs that retained naive-cell-specific features, including global DNA hypomethylation, HERVK expression, and two active X chromosomes. We further show that hESCs cultured under these modified conditions proliferated more rapidly; accrued fewer chromosomal abnormalities; and displayed changes in the phosphorylation levels of MAPK components, regulators of DNA damage/repair, and cell cycle. We thus provide a simple modification to current methods that can enable robust growth and reduced genomic instability in naive hESCs.


Asunto(s)
Células Madre Embrionarias/metabolismo , Inestabilidad Genómica , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Metilación de ADN , Células Madre Embrionarias/enzimología , Humanos , Proteoma , Transcriptoma
14.
Nature ; 518(7539): 344-9, 2015 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-25693565

RESUMEN

Pluripotent stem cells provide a powerful system to dissect the underlying molecular dynamics that regulate cell fate changes during mammalian development. Here we report the integrative analysis of genome-wide binding data for 38 transcription factors with extensive epigenome and transcriptional data across the differentiation of human embryonic stem cells to the three germ layers. We describe core regulatory dynamics and show the lineage-specific behaviour of selected factors. In addition to the orchestrated remodelling of the chromatin landscape, we find that the binding of several transcription factors is strongly associated with specific loss of DNA methylation in one germ layer, and in many cases a reciprocal gain in the other layers. Taken together, our work shows context-dependent rewiring of transcription factor binding, downstream signalling effectors, and the epigenome during human embryonic stem cell differentiation.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Factores de Transcripción/metabolismo , Diferenciación Celular/genética , Linaje de la Célula , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina/genética , Metilación de ADN , Elementos de Facilitación Genéticos/genética , Epigénesis Genética/genética , Epigenómica , Genoma Humano/genética , Estratos Germinativos/citología , Estratos Germinativos/metabolismo , Histonas/química , Histonas/metabolismo , Humanos , Unión Proteica , Transducción de Señal , Transcripción Genética/genética
15.
Nature ; 518(7539): 355-359, 2015 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-25533951

RESUMEN

Models derived from human pluripotent stem cells that accurately recapitulate neural development in vitro and allow for the generation of specific neuronal subtypes are of major interest to the stem cell and biomedical community. Notch signalling, particularly through the Notch effector HES5, is a major pathway critical for the onset and maintenance of neural progenitor cells in the embryonic and adult nervous system. Here we report the transcriptional and epigenomic analysis of six consecutive neural progenitor cell stages derived from a HES5::eGFP reporter human embryonic stem cell line. Using this system, we aimed to model cell-fate decisions including specification, expansion and patterning during the ontogeny of cortical neural stem and progenitor cells. In order to dissect regulatory mechanisms that orchestrate the stage-specific differentiation process, we developed a computational framework to infer key regulators of each cell-state transition based on the progressive remodelling of the epigenetic landscape and then validated these through a pooled short hairpin RNA screen. We were also able to refine our previous observations on epigenetic priming at transcription factor binding sites and suggest here that they are mediated by combinations of core and stage-specific factors. Taken together, we demonstrate the utility of our system and outline a general framework, not limited to the context of the neural lineage, to dissect regulatory circuits of differentiation.


Asunto(s)
Diferenciación Celular/genética , Células Madre Embrionarias/citología , Epigénesis Genética/genética , Epigenómica/métodos , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Sitios de Unión , Linaje de la Célula/genética , Células Madre Embrionarias/metabolismo , Humanos , ARN Interferente Pequeño/análisis , ARN Interferente Pequeño/genética , Reproducibilidad de los Resultados , Factores de Transcripción/metabolismo , Transcripción Genética/genética
16.
Mol Cell ; 47(4): 633-47, 2012 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-22841485

RESUMEN

DNA methylation is a mechanism of epigenetic regulation that is common to all vertebrates. Functional studies underscore its relevance for tissue homeostasis, but the global dynamics of DNA methylation during in vivo differentiation remain underexplored. Here we report high-resolution DNA methylation maps of adult stem cell differentiation in mouse, focusing on 19 purified cell populations of the blood and skin lineages. DNA methylation changes were locus specific and relatively modest in magnitude. They frequently overlapped with lineage-associated transcription factors and their binding sites, suggesting that DNA methylation may protect cells from aberrant transcription factor activation. DNA methylation and gene expression provided complementary information, and combining the two enabled us to infer the cellular differentiation hierarchy of the blood lineage directly from genome-scale data. In summary, these results demonstrate that in vivo differentiation of adult stem cells is associated with small but informative changes in the genomic distribution of DNA methylation.


Asunto(s)
Células Madre Adultas/citología , Células Sanguíneas/citología , Metilación de ADN , Piel/citología , Animales , Sitios de Unión , Ciclo Celular/genética , Diferenciación Celular/genética , Linaje de la Célula , Regulación hacia Abajo , Epigenómica , Expresión Génica , Genes Homeobox/genética , Sitios Genéticos , Genoma/genética , Linfocitos/citología , Ratones , Células Mieloides/citología
17.
Nature ; 500(7463): 477-81, 2013 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-23925113

RESUMEN

DNA methylation is a defining feature of mammalian cellular identity and is essential for normal development. Most cell types, except germ cells and pre-implantation embryos, display relatively stable DNA methylation patterns, with 70-80% of all CpGs being methylated. Despite recent advances, we still have a limited understanding of when, where and how many CpGs participate in genomic regulation. Here we report the in-depth analysis of 42 whole-genome bisulphite sequencing data sets across 30 diverse human cell and tissue types. We observe dynamic regulation for only 21.8% of autosomal CpGs within a normal developmental context, most of which are distal to transcription start sites. These dynamic CpGs co-localize with gene regulatory elements, particularly enhancers and transcription-factor-binding sites, which allow identification of key lineage-specific regulators. In addition, differentially methylated regions (DMRs) often contain single nucleotide polymorphisms associated with cell-type-related diseases as determined by genome-wide association studies. The results also highlight the general inefficiency of whole-genome bisulphite sequencing, as 70-80% of the sequencing reads across these data sets provided little or no relevant information about CpG methylation. To demonstrate further the utility of our DMR set, we use it to classify unknown samples and identify representative signature regions that recapitulate major DNA methylation dynamics. In summary, although in theory every CpG can change its methylation state, our results suggest that only a fraction does so as part of coordinated regulatory programs. Therefore, our selected DMRs can serve as a starting point to guide new, more effective reduced representation approaches to capture the most informative fraction of CpGs, as well as further pinpoint putative regulatory elements.


Asunto(s)
Metilación de ADN , Genoma Humano/genética , Sitios de Unión , Islas de CpG/genética , Elementos de Facilitación Genéticos/genética , Estudio de Asociación del Genoma Completo , Humanos , Especificidad de Órganos , Polimorfismo de Nucleótido Simple/genética , Análisis de Secuencia de ADN , Sulfitos/metabolismo , Factores de Transcripción/metabolismo
18.
Nature ; 484(7394): 339-44, 2012 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-22456710

RESUMEN

DNA methylation is highly dynamic during mammalian embryogenesis. It is broadly accepted that the paternal genome is actively depleted of 5-methylcytosine at fertilization, followed by passive loss that reaches a minimum at the blastocyst stage. However, this model is based on limited data, and so far no base-resolution maps exist to support and refine it. Here we generate genome-scale DNA methylation maps in mouse gametes and from the zygote through post-implantation. We find that the oocyte already exhibits global hypomethylation, particularly at specific families of long interspersed element 1 and long terminal repeat retroelements, which are disparately methylated between gametes and have lower methylation values in the zygote than in sperm. Surprisingly, the oocyte contributes a unique set of differentially methylated regions (DMRs)--including many CpG island promoters--that are maintained in the early embryo but are lost upon specification and absent from somatic cells. In contrast, sperm-contributed DMRs are largely intergenic and become hypermethylated after the blastocyst stage. Our data provide a genome-scale, base-resolution timeline of DNA methylation in the pre-specified embryo, when this epigenetic modification is most dynamic, before returning to the canonical somatic pattern.


Asunto(s)
Metilación de ADN , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/genética , Animales , Islas de CpG/genética , Metilación de ADN/genética , Femenino , Fertilización/genética , Genoma/genética , Elementos de Nucleótido Esparcido Largo/genética , Masculino , Ratones , Oocitos/metabolismo , Espermatozoides/metabolismo , Secuencias Repetidas Terminales/genética , Cigoto/metabolismo
19.
Genome Res ; 22(6): 1128-38, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22466170

RESUMEN

Cross-talk between DNA methylation and histone modifications drives the establishment of composite epigenetic signatures and is traditionally studied using correlative rather than direct approaches. Here, we present sequential ChIP-bisulfite-sequencing (ChIP-BS-seq) as an approach to quantitatively assess DNA methylation patterns associated with chromatin modifications or chromatin-associated factors directly. A chromatin-immunoprecipitation (ChIP)-capturing step is used to obtain a restricted representation of the genome occupied by the epigenetic feature of interest, for which a single-base resolution DNA methylation map is then generated. When applied to H3 lysine 27 trimethylation (H3K27me3), we found that H3K27me3 and DNA methylation are compatible throughout most of the genome, except for CpG islands, where these two marks are mutually exclusive. Further ChIP-BS-seq-based analysis in Dnmt triple-knockout (TKO) embryonic stem cells revealed that total loss of CpG methylation is associated with alteration of H3K27me3 levels throughout the genome: H3K27me3 in localized peaks is decreased while broad local enrichments (BLOCs) of H3K27me3 are formed. At an even broader scale, these BLOCs correspond to regions of high DNA methylation in wild-type ES cells, suggesting that DNA methylation prevents H3K27me3 deposition locally and at a megabase scale. Our strategy provides a unique way of investigating global interdependencies between DNA methylation and other chromatin features.


Asunto(s)
Inmunoprecipitación de Cromatina/métodos , Cromatina/genética , Islas de CpG , Metilación de ADN , Histonas/metabolismo , Análisis de Secuencia de ADN/métodos , Animales , Línea Celular , Línea Celular Tumoral , Cromatina/efectos de los fármacos , Neoplasias del Colon/genética , Células Madre Embrionarias/fisiología , Epigénesis Genética , Técnicas de Inactivación de Genes , Genómica/métodos , Humanos , Lisina/metabolismo , Ratones , Sulfitos/farmacología
20.
Curr Microbiol ; 71(1): 143-9, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26003628

RESUMEN

Centenarians constitute a significant subpopulation in the Bama County of Guangxi province in China. The beneficial effects of intestinal microbiota, especially bifidobacteria of centenarians, have been widely accepted; however, knowledge about Bifidobacterium species in centenarians is not adequate. The aim of this study was to investigate the quantity and prevalence of fecal Bifidobacterium in healthy longevous individuals. Fecal samples from eight centenarians from Bama (aged 100 to 108 years), eight younger elderlies from Bama (aged 80 to 99 years), and eight younger elderlies from Nanning (aged 80 to 99 years) were analyzed using denaturing gradient gel electrophoresis, species-specific clone library, and quantitative polymerase chain reaction technology (qPCR). A total of eight different Bifidobacterium species were detected. B. dentium, B. longum, B. thermophilum, B. pseudocatenulatum/B. catenulatum, and B. adolescentis were common in fecal of centenarians and young elderly. B. minimum, B. saecularmay/B. pullorum/B. gallinarum, and B. mongoliense were found in centenarians but were absent in the younger elderlies. In addition, Bifidobacterium species found in centenarians were different from those found in Bama young elderly and Nanning young elderly, and the principal differences were the significant increase in the population of B. longum (P < 0.05) and B. dentium (P < 0.05) and the reduction in the frequency of B. adolescentis (P < 0.05), respectively. Centenarians tend to have more complex fecal Bifidobacterium species than young elderlies from different regions.


Asunto(s)
Carga Bacteriana , Bifidobacterium/clasificación , Bifidobacterium/aislamiento & purificación , Heces/microbiología , Anciano de 80 o más Años , Bifidobacterium/genética , China , Electroforesis en Gel de Gradiente Desnaturalizante , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA