Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 229
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 157(3): 664-75, 2014 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-24746027

RESUMEN

Sensory systems for detecting tactile stimuli have evolved from touch-sensing nerves in invertebrates to complicated tactile end organs in mammals. Merkel discs are tactile end organs consisting of Merkel cells and Aß-afferent nerve endings and are localized in fingertips, whisker hair follicles, and other touch-sensitive spots. Merkel discs transduce touch into slowly adapting impulses to enable tactile discrimination, but their transduction and encoding mechanisms remain unknown. Using rat whisker hair follicles, we show that Merkel cells rather than Aß-afferent nerve endings are primary sites of tactile transduction and identify the Piezo2 ion channel as the Merkel cell mechanical transducer. Piezo2 transduces tactile stimuli into Ca(2+)-action potentials in Merkel cells, which drive Aß-afferent nerve endings to fire slowly adapting impulses. We further demonstrate that Piezo2 and Ca(2+)-action potentials in Merkel cells are required for behavioral tactile responses. Our findings provide insights into how tactile end-organs function and have clinical implications for tactile dysfunctions.


Asunto(s)
Canales Iónicos/metabolismo , Células de Merkel/metabolismo , Tacto , Vibrisas/citología , Vibrisas/fisiología , Potenciales de Acción , Animales , Calcio/metabolismo , Técnicas de Silenciamiento del Gen , Canales Iónicos/genética , Mecanorreceptores/metabolismo , Mecanotransducción Celular , Ratas
2.
J Biol Chem ; 300(1): 105513, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38042483

RESUMEN

α1,6-Fucosyltransferase (Fut8) catalyzes the transfer of fucose to the innermost GlcNAc residue of N-glycan to form core fucosylation. Our previous studies showed that lipopolysaccharide (LPS) treatment highly induced neuroinflammation in Fut8 homozygous KO (Fut8-/-) or heterozygous KO (Fut8+/-) mice, compared with the WT (Fut8+/+) mice. To understand the underlying mechanism, we utilized a sensitive inflammation-monitoring mouse system that contains the human interleukin-6 (hIL6) bacterial artificial chromosome transgene modified with luciferase (Luc) reporter cassette. We successfully detected LPS-induced neuroinflammation in the central nervous system by exploiting this bacterial artificial chromosome transgenic monitoring system. Then we examined the effects of l-fucose on neuroinflammation in the Fut8+/- mice. The lectin blot and mass spectrometry analysis showed that l-fucose preadministration increased the core fucosylation levels in the Fut8+/- mice. Notably, exogenous l-fucose attenuated the LPS-induced IL-6 mRNA and Luc mRNA expression in the cerebral tissues, confirmed using the hIL6-Luc bioluminescence imaging system. The activation of microglial cells, which provoke neuroinflammatory responses upon LPS stimulation, was inhibited by l-fucose preadministration. l-Fucose also suppressed the downstream intracellular signaling of IL-6, such as the phosphorylation levels of JAK2 (Janus kinase 2), Akt (protein kinase B), and STAT3 (signal transducer and activator of transcription 3). l-Fucose administration increased gp130 core fucosylation levels and decreased the association of gp130 with the IL-6 receptor in Fut8+/- mice, which was further confirmed in BV-2 cells. These results indicate that l-fucose administration ameliorates the LPS-induced neuroinflammation in the Fut8+/- mice, suggesting that core fucosylation plays a vital role in anti-inflammation and that l-fucose is a potential prophylactic compound against neuroinflammation.


Asunto(s)
Fucosa , Inflamación , Lipopolisacáridos , Animales , Humanos , Ratones , Receptor gp130 de Citocinas , Fucosa/farmacología , Fucosa/metabolismo , Fucosiltransferasas/genética , Fucosiltransferasas/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Interleucina-6/genética , Lipopolisacáridos/toxicidad , Enfermedades Neuroinflamatorias , ARN Mensajero
3.
Proc Natl Acad Sci U S A ; 119(43): e2205277119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36252012

RESUMEN

Mucins are the main macrocomponents of the mucus layer that protects the digestive tract from pathogens. Fucosylation of mucins increases mucus viscoelasticity and its resistance to shear stress. These properties are altered in patients with ulcerative colitis (UC), which is marked by a chronic inflammation of the distal part of the colon. Here, we show that levels of Fucosyltransferase 8 (FUT8) and specific mucins are increased in the distal inflamed colon of UC patients. Recapitulating this FUT8 overexpression in mucin-producing HT29-18N2 colonic cell line increases delivery of MUC1 to the plasma membrane and extracellular release of MUC2 and MUC5AC. Mucins secreted by FUT8 overexpressing cells are more resistant to removal from the cell surface than mucins secreted by FUT8-depleted cells (FUT8 KD). FUT8 KD causes intracellular accumulation of MUC1 and alters the ratio of secreted MUC2 to MUC5AC. These data fit well with the Fut8-/- mice phenotype, which are protected from UC. Fut8-/- mice exhibit a thinner proximal colon mucus layer with an altered ratio of neutral to acidic mucins. Together, our data reveal that FUT8 modifies the biophysical properties of mucus by controlling levels of cell surface MUC1 and quantity and quality of secreted MUC2 and MUC5AC. We suggest that these changes in mucus viscoelasticity likely facilitate bacterial-epithelial interactions leading to inflammation and UC progression.


Asunto(s)
Colitis Ulcerosa , Fucosiltransferasas , Animales , Ratones , Colitis Ulcerosa/genética , Colitis Ulcerosa/metabolismo , Fucosiltransferasas/genética , Inflamación , Mucina 2/genética , Mucina 2/metabolismo , Células HT29
4.
J Biol Chem ; 299(4): 103051, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36813234

RESUMEN

The phenomenon of multidrug resistance (MDR) is called chemoresistance with respect to the treatment of cancer, and it continues to be a major challenge. The role of N-glycosylation in chemoresistance, however, remains poorly understood. Here, we established a traditional model for adriamycin resistance in K562 cells, which are also known as K562/adriamycin-resistant (ADR) cells. Lectin blot, mass spectrometry, and RT-PCR analysis showed that the expression levels of N-acetylglucosaminyltransferase III (GnT-III) mRNA and its products, bisected N-glycans, are significantly decreased in K562/ADR cells, compared with the levels in parent K562 cells. By contrast, the expression levels of both P-glycoprotein (P-gp) and its intracellular key regulator, NF-κB signaling, are significantly increased in K562/ADR cells. These upregulations were sufficiently suppressed by the overexpression of GnT-III in K562/ADR cells. We found that the expression of GnT-III consistently decreased chemoresistance for doxorubicin and dasatinib, as well as activation of the NF-κB pathway by tumor necrosis factor (TNF) α, which binds to two structurally distinct glycoproteins, TNF receptor 1 (TNFR1) and TNF receptor 2 (TNFR2), on the cell surface. Interestingly, our immunoprecipitation analysis revealed that only TNFR2, but not TNFR1, contains bisected N-glycans. The lack of GnT-III strongly induced TNFR2's autotrimerization without ligand stimulation, which was rescued by the overexpression of GnT-III in K562/ADR cells. Furthermore, the deficiency of TNFR2 suppressed P-gp expression while it increased GnT-III expression. Taken together, these results clearly show that GnT-III negatively regulates chemoresistance via the suppression of P-gp expression, which is regulated by the TNFR2-NF/κB signaling pathway.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , FN-kappa B , Humanos , FN-kappa B/genética , FN-kappa B/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Resistencia a Antineoplásicos , Receptores Tipo II del Factor de Necrosis Tumoral/genética , Transducción de Señal , Doxorrubicina/farmacología , Polisacáridos/metabolismo , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo
5.
J Biol Chem ; 299(8): 105051, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37451482

RESUMEN

Sialylation is a terminal glycosylated modification of glycoproteins that regulates critical biological events such as cell adhesion and immune response. Our previous study showed that integrin α3ß1 plays a crucial role in regulating the sialylation of N-glycans. However, the underlying mechanism for the regulation remains unclear. This study investigated how sialylation is affected by focal adhesion kinase (FAK), which is a critical downstream signal molecule of integrin ß1. We established a stable FAK knockout (KO) cell line using the CRISPR/Cas9 system in HeLa cells. The results obtained from lectin blot, flow cytometric analysis, and MS showed that the sialylation levels were significantly decreased in the KO cells compared with that in wild-type (WT) cells. Moreover, phosphatidylinositol 4-phosphate (PI4P) expression levels were also reduced in the KO cells due to a decrease in the stability of phosphatidylinositol 4-kinase-IIα (PI4KIIα). Notably, the decreased levels of sialylation, PI4P, and the complex formation between GOLPH3 and ST3GAL4 or ST6GAL1, which are the main sialyltransferases for modification of N-glycans, were significantly restored by the re-expression of FAK. Furthermore, the decreased sialylation and phosphorylation of Akt and cell migration caused by FAK deficiency all were restored by overexpressing PI4KIIα, which suggests that PI4KIIα is one of the downstream molecules of FAK. These findings indicate that FAK regulates sialylation via the PI4P synthesis pathway and a novel mechanism is suggested for the integrin-FAK-PI4KIIα-GOLPH3-ST axis modulation of sialylation in N-glycans.


Asunto(s)
Quinasa 1 de Adhesión Focal , Polisacáridos , Transducción de Señal , Humanos , Quinasa 1 de Adhesión Focal/metabolismo , Células HeLa , Proteínas de la Membrana/metabolismo , Fosforilación , Polisacáridos/metabolismo
6.
J Biol Chem ; 299(12): 105365, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37865317

RESUMEN

Glycan structure is often modulated in disease or predisease states, suggesting that such changes might serve as biomarkers. Here, we generated a monoclonal antibody (mAb) against the core fucose of the N-glycan in human IgG. Notably, this mAb can be used in Western blotting and ELISA. ELISA using this mAb revealed a low level of the core fucose of the N-glycan in IgG, suggesting that the level of acore fucosylated (noncore fucosylated) IgG was increased in the sera of the patients with lung cancer, chronic obstructive pulmonary disease, and interstitial pneumonia compared to healthy subjects. In a coculture analysis using human lung adenocarcinoma A549 cells and antibody-secreting B cells, the downregulation of the FUT8 (α1,6 fucosyltransferase) gene and a low level of core fucose of the N-glycan in IgG in antibody-secreting B cells were observed after coculture. A dramatic alteration in gene expression profiles for cytokines, chemokines, and their receptors were also observed after coculturing, and we found that the identified C-C motif chemokine 2 was partially involved in the downregulation of the FUT8 gene and the low level of core fucose of the N-glycan in IgG in antibody-secreting B cells. We also developed a latex turbidimetric immunoassay using this mAb. These results suggest that communication with C-C motif chemokine 2 between lung cells and antibody-secreting B cells downregulate the level of core fucose of the N-glycan in IgG, i.e., the increased level of acore fucosylated (noncore fucosylated) IgG, which would be a novel biomarker for the diagnosis of patients with pulmonary diseases.


Asunto(s)
Anticuerpos Monoclonales , Fucosa , Inmunoglobulina G , Enfermedades Pulmonares , Polisacáridos , Humanos , Células A549 , Anticuerpos Monoclonales/metabolismo , Especificidad de Anticuerpos , Linfocitos B/inmunología , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Quimiocinas/genética , Quimiocinas/metabolismo , Fucosa/sangre , Fucosa/metabolismo , Fucosiltransferasas/genética , Fucosiltransferasas/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/inmunología , Técnicas de Inactivación de Genes , Inmunoensayo/normas , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Enfermedades Pulmonares/diagnóstico , Enfermedades Pulmonares/inmunología , Polisacáridos/metabolismo , Animales , Ratones , Células CHO , Células HEK293 , Cricetulus
7.
Mol Pain ; : 17448069241261687, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38818803

RESUMEN

Preclinical studies on pathological pain rely on the von Frey test to examine changes in mechanical thresholds and the acetone spray test to determine alterations in cold sensitivity in rodents. These tests are typically conducted on rodent hindpaws, where animals with pathological pain show reliable nocifensive responses to von Frey filaments and acetone drops applied to the hindpaws. Pathological pain in orofacial regions is also an important clinical problem and has been investigated with rodents. However, performing the von Frey and acetone spray tests in the orofacial region has been challenging, largely due to the high mobility of the head of testing animals. To solve this problem, we implemented a sheltering tube method to assess orofacial nociception in mice. In experiments, mice were sheltered in elevated tubes, where they were quickly accommodated because the tubes provided safe shelters for mice. Examiners could reliably apply mechanical stimuli with von Frey filament, cold stimuli with acetone spray, and light stimuli with a laser beam to the orofacial regions. We validated this method in Nav1.8-ChR2 mice treated with oxaliplatin that induced peripheral neuropathy. Using the von Frey test, orofacial response frequencies and nociceptive response scores were significantly increased in Nav1.8-ChR2 mice treated with oxaliplatin. In the acetone spray test, the duration of orofacial responses was significantly prolonged in oxaliplatin-treated mice. The response frequencies to laser light stimulation were significantly increased in Nav1.8-ChR2 mice treated with oxaliplatin. Our sheltering tube method allows us to reliably perform the von Frey, acetone spray, and optogenetic tests in orofacial regions to investigate orofacial pain.

8.
Mol Pain ; 20: 17448069241240452, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38438192

RESUMEN

We recently used Nav1.8-ChR2 mice in which Nav1.8-expressing afferents were optogenetically tagged to classify mechanosensitive afferents into Nav1.8-ChR2-positive and Nav1.8-ChR2-negative mechanoreceptors. We found that the former were mainly high threshold mechanoreceptors (HTMRs), while the latter were low threshold mechanoreceptors (LTMRs). In the present study, we further investigated whether the properties of these mechanoreceptors were altered following tissue inflammation. Nav1.8-ChR2 mice received a subcutaneous injection of saline or Complete Freund's Adjuvant (CFA) in the hindpaws. Using the hind paw glabrous skin-tibial nerve preparation and the pressure-clamped single-fiber recordings, we found that CFA-induced hind paw inflammation lowered the mechanical threshold of many Nav1.8-ChR2-positive Aß-fiber mechanoreceptors but heightened the mechanical threshold of many Nav1.8-ChR2-negative Aß-fiber mechanoreceptors. Spontaneous action potential impulses were not observed in Nav1.8-ChR2-positive Aß-fiber mechanoreceptors but occurred in Nav1.8-ChR2-negative Aß-fiber mechanoreceptors with a lower mechanical threshold in the saline goup, and a higher mechanical threshold in the CFA group. No significant change was observed in the mechanical sensitivity of Nav1.8-ChR2-positive and Nav1.8-ChR2-negative Aδ-fiber mechanoreceptors and Nav1.8-ChR2-positive C-fiber mechanoreceptors following hind paw inflammation. Collectively, inflammation significantly altered the functional properties of both Nav1.8-ChR2-positive and Nav1.8-ChR2-negative Aß-fiber mechanoreceptors, which may contribute to mechanical allodynia during inflammation.


Asunto(s)
Mecanorreceptores , Piel , Ratones , Animales , Piel/inervación , Hiperalgesia , Fibras Nerviosas Amielínicas/fisiología , Inflamación
9.
Cancer Sci ; 115(4): 1196-1208, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38288901

RESUMEN

Fms-like tyrosine kinase-3 (FLT3) is a commonly mutated gene in acute myeloid leukemia (AML). The two most common mutations are the internal-tandem duplication domain (ITD) mutation and the tyrosine kinase domain (TKD) mutation. FLT3-ITD and FLT3-TKD exhibit distinct protein stability, cellular localization, and intracellular signaling. To understand the underlying mechanisms, we performed proximity labeling with TurboID to identify proteins that regulate FLT3-ITD or -TKD differently. We found that BRCA1/BRCA2-containing complex subunit 36 (BRCC36), a specific K63-linked polyubiquitin deubiquitinase, was exclusively associated with ITD, not the wild type of FLT3 and TKD. Knockdown of BRCC36 resulted in decreased signal transducers and activators of transcription 5 phosphorylation and cell proliferation in ITD cells. Consistently, treatment with thiolutin, an inhibitor of BRCC36, specifically suppressed cell proliferation and induced cell apoptosis in ITD cells. Thiolutin efficiently affected leukemia cell lines expressing FLT3-ITD cell viability and exhibited mutual synergies with quizartinib, a standard clinical medicine for AML. Furthermore, mutation of the lysine at 609 of ITD led to significant suppression of K63 polyubiquitination and decreased its stability, suggesting that K609 is a critical site for K63 ubiquitination specifically recognized by BRCC36. These data indicate that BRCC36 is a specific regulator for FLT3-ITD, which may shed light on developing a novel therapeutic approach for AML.


Asunto(s)
Leucemia Mieloide Aguda , Tirosina Quinasa 3 Similar a fms , Humanos , Tirosina Quinasa 3 Similar a fms/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Transducción de Señal/fisiología , Mutación , Estabilidad Proteica
10.
Biochem Biophys Res Commun ; 710: 149541, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38608490

RESUMEN

For acute promyelocytic leukemia (APL), differentiation therapy with all-trans retinoic acid (ATRA) is well established. However, the narrow application and tolerance development of ATRA remain to be improved. In this study, we investigated the effects of combinations of glycosylation inhibitors with ATRA to achieve better efficiency than ATRA alone. We found that the combination of fucosylation inhibitor 6-alkynylfucose (6AF) and ATRA had an additional effect on cell differentiation, as revealed by expression changes in two differentiation markers, CD11b and CD11c, and significant morphological changes in NB4 APL and HL-60 acute myeloid leukemia (AML) cells. In AAL lectin blot analyses, ATRA or 6AF alone could decrease fucosylation, while their combination decreased fucosylation more efficiently. To clarify the molecular mechanism for the 6AF effect on ATRA-induced differentiation, we performed microarray analyses using NB4 cells. In a pathway analysis using DAVID software, we found that the C-type lectin receptor (CLR) signaling pathway was enriched with high significance. In real-time PCR analyses using NB4 and HL-60 cells, FcεRIγ, CLEC6A, CLEC7A, CASP1, IL-1ß, and EGR3, as components of the CLR pathway, as well as CD45 and AKT3 were upregulated by 6AF in ATRA-induced differentiation. Taken together, the present findings suggest that the CLR signaling pathway is involved in the 6AF effect on ATRA-induced differentiation.


Asunto(s)
Leucemia Promielocítica Aguda , Humanos , Leucemia Promielocítica Aguda/tratamiento farmacológico , Leucemia Promielocítica Aguda/metabolismo , Glicosilación , Tretinoina/farmacología , Tretinoina/metabolismo , Diferenciación Celular , Células HL-60 , Línea Celular Tumoral
11.
Glycoconj J ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958800

RESUMEN

Altered glycosylation is a common feature of cancer cells. Some subsets of glycans are found to be frequently enriched on the tumor cell surface and implicated in different tumor phenotypes. Among these, changes in sialylation have long been associated with metastatic cell behaviors such as invasion and enhanced cell survival. Sialylation typically exists in three prominent linkages: α2,3, α2,6, and α2,8, catalyzed by a group of sialyltransferases. The aberrant expression of all three linkages has been related to cancer progression. The increased α2,6 sialylation on N-glycans catalyzed by ß-galactoside α2,6 sialyltransferase 1 (ST6Gal1) is frequently observed in many cancers. In contrast, functions of α2,3 sialylation on N-glycans catalyzed by at least three ß-galactoside α2,3-sialyltransferases, ST3Gal3, ST3Gal4, and ST3Gal6 remain elusive due to a possibility of compensating for one another. In this minireview, we briefly describe functions of sialylation and recent findings that different α2,3 sialyltransferases specifically modify target proteins, as well as sialylation regulatory mechanisms vis a complex formation among integrin α3ß1, Golgi phosphoprotein 3 (GOLPH3), phosphatidylinositol 4-kinase IIα (PI4KIIα), focal adhesion kinase (FAK) and sialyltransferase, which suggests a new concept for the regulation of glycosylation in cell biology.

12.
Artículo en Inglés | MEDLINE | ID: mdl-38915288

RESUMEN

FMS-like tyrosine kinase 3 (FLT3) is a receptor tyrosine kinase expressed in hematopoietic cells. Internal-tandem duplication domain (ITD) mutation and tyrosine kinase domain (TKD) mutation are the two most common mutations in acute myeloid leukemia (AML). Post-translational modifications (PTMs) of FLT3, such as glycosylation and ubiquitination, have been shown to impact various aspects of the protein in both wild-type (WT) and mutant forms of FLT3. In this review, we describe how the glycosylation status of FLT3 affects its subcellular localization, which significantly impacts the activation of downstream signaling, and the impact of specific ubiquitination on FLT3 function and stability, which may be associated with disease progression. Moreover, potential novel therapeutic strategies involving a combination of FLT3 tyrosine kinase inhibitors and drugs targeting glycosylation or ubiquitination are discussed.

13.
J Neurosci ; 42(25): 4980-4994, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35606142

RESUMEN

Ion channels at the nodes of Ranvier (NRs) are believed to play essential roles in intrinsic electrophysiological properties and saltatory conduction of action potentials (AP) at the NRs of myelinated nerves. While we have recently shown that two-pore domain potassium (K2P) channels play a key role at the NRs of Aß-afferent nerves, K+ channels and their functions at the NRs of mammalian motor nerves remain elusive. Here we addressed this issue by using ex vivo preparations of lumbar spinal ventral nerves from both male and female rats and the pressure-patch-clamp recordings at their NRs. We found that depolarizing voltages evoked large noninactivating outward currents at NRs. The outward currents could be partially inhibited by voltage-gated K+ channel blockers, largely inhibited by K2P blockers and cooling temperatures. Inhibition of the outward currents by voltage-gated K+ channel blockers, K2P blockers, or cooling temperatures significantly altered electrophysiological properties measured at the NRs, including resting membrane potential, input resistance, AP width, AP amplitude, AP threshold, and AP rheobase. Furthermore, K2P blockers and cooling temperatures significantly reduced saltatory conduction velocity and success rates of APs in response to high-frequency stimulation. Voltage-gated K+ channel blockers reduced AP success rates at high-frequency stimulation without significantly affecting saltatory conduction velocity. Collectively, both K2P and voltage-gated K+ channels play significant roles in intrinsic electrophysiological properties and saltatory conduction at NRs of motor nerve fibers of rats. The effects of cooling temperatures on saltatory conduction are at least partially mediated by K2P channels at the NRs.SIGNIFICANCE STATEMENT Ion channels localized at the NRs are believed to be key determinants of saltatory conduction on myelinated nerves. However, ion channels and their functions at the NRs have not been fully studied in different types of mammalian myelinated nerves. Here we use the pressure-patch-clamp recordings to show that both K2P and voltage-gated K+ channels play significant roles in intrinsic electrophysiological properties and saltatory conduction at NRs of lumbar spinal ventral nerves of rats. Furthermore, cooling temperatures exert effects on saltatory conduction via inhibition of ion channels at the NRs. Our results provide new insights into saltatory conduction on myelinated nerves and may have physiological as well as pathologic implications.


Asunto(s)
Canales de Potasio con Entrada de Voltaje , Potenciales de Acción/fisiología , Animales , Femenino , Masculino , Mamíferos , Potenciales de la Membrana , Nódulos de Ranvier , Ratas , Nervios Espinales
14.
Mol Pain ; 19: 17448069221148958, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36526445

RESUMEN

The role of Aß-afferents in somatosensory function is often oversimplified as low threshold mechanoreceptors (LTMRs) with large omission of Aß-afferent involvement in nociception. Recently, we have characterized Aß-afferent neurons which have large diameter somas in the trigeminal ganglion (TG) and classified them into non-nociceptive and nociceptive-like TG afferent neurons based on their electrophysiological properties. Here, we extend our previous observations to further characterize electrophysiological properties of trigeminal Aß-afferent neurons and investigate their mechanical and chemical sensitivity by patch-clamp recordings from large-diameter TG neurons in ex vivo TG preparations of adult male and female rats. Based on cluster analysis of electrophysiological properties, trigeminal Aß-afferent neurons can be classified into five discrete types (type I, IIa, IIb, IIIa, and IIIb), which responded differentially to mechanical stimulation and sensory mediators including serotonin (5-HT), acetylcholine (ACh) and adenosine triphosphate (ATP). Notably, type I neuron action potential (AP) was small in amplitude, width was narrow in duration, and peak dV/dt repolarization was great with no deflection observed, whereas discretely graded differences were observed for type IIa, IIb, IIIa, and IIIb, as AP increased in amplitude, width broadened in duration, and peak dV/dt repolarization reduced with the emergence of increasing deflection. Type I, IIa, and IIb neurons were mostly mechanically sensitive, displaying robust and rapidly adapting mechanically activated current (IMA) in response to membrane displacement, while IIIa and IIIb, conversely, were almost all mechanically insensitive. Interestingly, mechanical insensitivity coincided with increased sensitivity to 5-HT and ACh. Together, type I, IIa and IIb display features of LTMR Aß-afferent neurons while type IIIa and type IIIb show properties of nociceptive Aß-afferent neurons.


Asunto(s)
Neuronas Aferentes , Serotonina , Ratas , Masculino , Femenino , Animales , Neuronas Aferentes/fisiología , Nociceptores/fisiología , Mecanorreceptores , Neuronas , Potenciales de Acción/fisiología , Ganglio del Trigémino
15.
Mol Pain ; 19: 17448069231187366, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37369680

RESUMEN

Large-diameter myelinated fibers in sciatic nerves are composed of both Aα/ß-afferent fibers and Aα-efferent fibers to convey sensory and motor impulses, respectively, via saltatory conduction for rapid leg responses. Saltatory conduction and electrophysiological properties at the nodes of Ranvier (NRs) of these sciatic nerve fibers have not been directly studied. We used ex vivo sciatic nerve preparations from rats and applied patch-clamp recordings at the NRs of both Aα/ß-afferent fibers and Aα-efferent fibers in the sciatic nerves to characterize their saltatory conduction and intrinsic electrophysiological properties. The velocity and frequency of saltatory conduction in both types of fibers were similar. Resting membrane potentials (RMPs), input resistance, action potential (AP) threshold, and AP rheobase were also not significantly different at the NRs of the two types of fibers in the sciatic nerves. In comparison with Aα/ß-afferent fibers, Aα-efferent fibers in the sciatic nerves show higher amplitude and broader width of APs at their NRs. At the NRs of both types of fibers, depolarizing voltages evoked transient inward currents followed by non-inactivating outward currents, and the inward currents and non-inactivating outward currents at the NRs were not significantly different between the two types of fibers. Using AP-clamp, inward currents during AP upstroke were found to be insignificant difference, but amplitudes of non-inactivating outward currents during AP repolarization were significantly lower at the NRs of Aα-efferent fibers than at the NRs of Aα/ß-afferent fibers in the sciatic nerves. Collectively, saltatory conduction, ionic currents, and intrinsic electrophysiological properties at the NRs of Aα/ß-afferent fibers and Aα-efferent fibers in the sciatic nerves are generally similar, but some differences were also observed.


Asunto(s)
Fibras Nerviosas Mielínicas , Conducción Nerviosa , Ratas , Animales , Fibras Nerviosas Mielínicas/fisiología , Nódulos de Ranvier , Potenciales de Acción/fisiología , Nervio Ciático/fisiología
16.
FASEB J ; 36(2): e22149, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34981577

RESUMEN

N-Linked glycosylation and O-linked N-acetylglucosamine (O-GlcNAc) are important protein post-translational modifications that are orchestrated by a diverse set of gene products. Thus far, the relationship between these two types of glycosylation has remained elusive, and it is unclear whether one influences the other via UDP-GlcNAc, which is a common donor substrate. Theoretically, a decrease in O-GlcNAcylation may increase the products of GlcNAc-branched N-glycans. In this study, via examination by lectin blotting, HPLC, and mass spectrometry analysis, however, we found that the amounts of GlcNAc-branched tri-antennary N-glycans catalyzed by N-acetylglucosaminyltransferase IV (GnT-IV) and tetra-antennary N-glycans were significantly decreased in O-GlcNAc transferase knockdown cells (OGT-KD) compared with those in wild type cells. We examined this specific alteration by focusing on SLC35A3, which is the main UDP-GlcNAc transporter in mammals that is believed to modulate GnT-IV activation. It is interesting that a deficiency of SLC35A3 specifically leads to a decrease in the amounts of GlcNAc-branched tri- and tetra-antennary N-glycans. Furthermore, co-immunoprecipitation experiments have shown that SLC35A3 interacts with GnT-IV, but not with N-acetylglucosaminyltransferase V. Western blot and chemoenzymatic labeling assay have confirmed that OGT modifies SLC35A3 and that O-GlcNAcylation contributes to its stability. Furthermore, we found that SLC35A3-KO enhances cell spreading and suppresses both cell migration and cell proliferation, which is similar to the phenomena observed in the OGT-KD cells. Taken together, these data are the first to demonstrate that O-GlcNAcylation specifically governs the biosynthesis of tri- and tetra-antennary N-glycans via the OGT-SLC35A3-GnT-IV axis.


Asunto(s)
Acetilglucosamina/metabolismo , Proteínas de Transporte de Membrana/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Polisacáridos/metabolismo , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Glicosilación , Células HEK293 , Células HeLa , Humanos
17.
Int J Mol Sci ; 24(8)2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37108200

RESUMEN

Fucosylated proteins are widely used as biomarkers of cancer and inflammation. Fucosylated alpha-fetoprotein (AFP-L3) is a specific biomarker for hepatocellular carcinoma. We previously showed that increases in serum AFP-L3 levels depend on increased expression of fucosylation-regulatory genes and abnormal transport of fucosylated proteins in cancer cells. In normal hepatocytes, fucosylated proteins are selectively secreted in the bile duct but not blood. In cases of cancer cells without cellular polarity, this selective secretion system is destroyed. Here, we aimed to identify cargo proteins involved in the selective secretion of fucosylated proteins, such as AFP-L3, into bile duct-like structures in HepG2 hepatoma cells, which have cellular polarity like, in part, normal hepatocytes. α1-6 Fucosyltransferase (FUT8) is a key enzyme to synthesize core fucose and produce AFP-L3. Firstly, we knocked out the FUT8 gene in HepG2 cells and investigated the effects on the secretion of AFP-L3. AFP-L3 accumulated in bile duct-like structures in HepG2 cells, and this phenomenon was diminished by FUT8 knockout, suggesting that HepG2 cells have cargo proteins for AFP-L3. To identify cargo proteins involved in the secretion of fucosylated proteins in HepG2 cells, immunoprecipitation and the proteomic Strep-tag system experiments followed by mass spectrometry analyses were performed. As a result of proteomic analysis, seven kinds of lectin-like molecules were identified, and we selected vesicular integral membrane protein gene VIP36 as a candidate of the cargo protein that interacts with the α1-6 fucosylation (core fucose) on N-glycan according to bibliographical consideration. Expectedly, the knockout of the VIP36 gene in HepG2 cells suppressed the secretion of AFP-L3 and other fucosylated proteins, such as fucosylated alpha-1 antitrypsin, into bile duct-like structures. We propose that VIP36 could be a cargo protein involved in the apical secretion of fucosylated proteins in HepG2 cells.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , alfa-Fetoproteínas/genética , alfa-Fetoproteínas/metabolismo , Células Hep G2 , Proteínas de la Membrana , Fucosa/metabolismo , Proteómica , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Conductos Biliares/metabolismo , Biomarcadores
18.
J Neurosci ; 41(10): 2091-2105, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33472822

RESUMEN

Trigeminal neuropathic pain is the most debilitating pain disorder but current treatments including opiates are not effective. A common symptom of trigeminal neuropathic pain is cold allodynia/hyperalgesia or cold hypersensitivity in orofacial area, a region where exposure to cooling temperatures are inevitable in daily life. Mechanisms underlying trigeminal neuropathic pain manifested with cold hypersensitivity are not fully understood. In this study, we investigated trigeminal neuropathic pain in male rats following infraorbital nerve chronic constrictive injury (ION-CCI). Assessed by the orofacial operant behavioral test, ION-CCI animals displayed orofacial cold hypersensitivity. The cold hypersensitivity was associated with the hyperexcitability of small-sized trigeminal ganglion (TG) neurons that innervated orofacial regions. Furthermore, ION-CCI resulted in a reduction of A-type voltage-gated K+ currents (IA currents) in these TG neurons. We further showed that these small-sized TG neurons expressed Kv4.3 voltage-gated K+ channels, and Kv4.3 expression in these cells was significantly downregulated following ION-CCI. Pharmacological inhibition of Kv4.3 channels with phrixotoxin-2 inhibited IA-currents in these TG neurons and induced orofacial cold hypersensitivity. On the other hand, pharmacological potentiation of Kv4.3 channels amplified IA currents in these TG neurons and alleviated orofacial cold hypersensitivity in ION-CCI rats. Collectively, Kv4.3 downregulation in nociceptive trigeminal afferent fibers may contribute to peripheral cold hypersensitivity following trigeminal nerve injury, and Kv4.3 activators may be clinically useful to alleviate trigeminal neuropathic pain.SIGNIFICANCE STATEMENT Trigeminal neuropathic pain, the most debilitating pain disorder, is often triggered and exacerbated by cooling temperatures. Here, we created infraorbital nerve chronic constrictive injury (ION-CCI) in rats, an animal model of trigeminal neuropathic pain to show that dysfunction of Kv4.3 voltage-gated K+ channels in nociceptive-like trigeminal ganglion (TG) neurons underlies the trigeminal neuropathic pain manifested with cold hypersensitivity in orofacial regions. Furthermore, we demonstrate that pharmacological potentiation of Kv4.3 channels can alleviate orofacial cold hypersensitivity in ION-CCI rats. Our results may have clinical implications in trigeminal neuropathic pain in human patients, and Kv4.3 channels may be an effective therapeutic target for this devastating pain disorder.


Asunto(s)
Hiperalgesia/metabolismo , Canales de Potasio Shal/metabolismo , Neuralgia del Trigémino/metabolismo , Animales , Frío , Cara , Masculino , Neuronas Aferentes/metabolismo , Ratas , Ratas Sprague-Dawley
19.
Mol Pain ; 18: 17448069221076606, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35189758

RESUMEN

Low threshold mechanoreceptors (LTMRs) are important for environmental exploration, social interaction, and tactile discrimination. Whisker hair follicles are mechanical sensory organs in non-primate mammals that are functionally equivalent to human fingertips. Several functional types of LTMRs have been identified in rodent whisker hair follicles, including rapidly adapting (RA), slow adapting type 1 (SA1), and slowly adapting type 2 (SA2) LTMRs. Properties of these LTMRs have not been fully characterized. In the present study, we have used pressure-clamped single-fiber recording technique to record impulses of RA, SA1, and SA2 LTMRs in mouse whisker hair follicles, and tested effects of 5-HT, Cd2+, tetraethylammonium (TEA), 4-aminopyridine (4-AP), and Ba2+ on the LTMR impulses. We show that 5-HT at 2 mM suppresses SA1 impulses but has no effects on RA and SA2 impulses. Cd2+ at 100 µM suppresses both SA1 and SA2 impulses but has no effects on RA impulses. TEA at 10 mM has no effects on RA and SA1 impulses but increased SA2 impulses. However, TEA at 1 mM and 200 µM decreases SA2 impulses. 4-AP at 1 mM suppresses both SA1 and SA2 impulses but has no effects on RA impulses. Ba2+ at 5 mM increases both RA and SA1 impulses but suppresses SA2 impulses. Collectively, RA, SA1, and SA2 LTMRs show distinct pharmacological properties, suggesting that these LTMRs may use different mechanisms to tune their mechanical signaling.


Asunto(s)
Folículo Piloso , Vibrisas , 4-Aminopiridina/farmacología , Animales , Cadmio/farmacología , Mamíferos , Mecanorreceptores , Ratones , Serotonina/farmacología , Tetraetilamonio/farmacología
20.
J Org Chem ; 87(23): 16084-16089, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36395460

RESUMEN

Despite several synthetic approaches that have been developed for α-deuterated amino acids, the synthesis of ß-deuterated amino acids has remained a challenge. Herein, we disclose a palladium catalyzed H/D exchange protocol for a ß-deuterated N-protected amino amide, which can be converted to a ß-deuterated amino acid simply by removal of protecting groups. This protocol is highly efficient, simply manipulated, and appliable for deuterium-labeling of many amino amides. In addition, deuterium labeling of phenylalanine derivatives was also successful when pivalic acid served as an additive to promote the H/D exchange process.


Asunto(s)
Aminoácidos , Paladio , Deuterio , Amidas , Catálisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA