Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Musculoskelet Disord ; 25(1): 270, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589862

RESUMEN

BACKGROUND: Fractures of hands and feet are common in children, but relevant epidemiological studies are currently lacking. We aim to study the epidemiological characteristics of hand and foot fractures and growth plate injuries in children and provide a theoretical basis for their prevention, diagnosis, and treatment. METHODS: We retrospectively analyzed the data of children with hand and foot fractures who were hospitalized at Shenzhen Children's Hospital between July 2015 and December 2020. Data on demographic characteristics, fracture site, treatment method, etiology of injury, and accompanying injuries were collected. The children were divided into four age groups: infants, preschool children, school children, and adolescents. The fracture sites were classified as first-level (the first-fifth finger/toe, metacarpal, metatarsal, carpal, and tarsal) and second-level (the first-fifth: proximal phalanx, middle phalanx, distal phalanx, metacarpal, and metatarsal) sites. The changing trends in fracture locations and injury causes among children in each age group were analyzed. RESULTS: Overall, 1301 children (1561 fractures; 835 boys and 466 girls) were included. The largest number of fractures occurred in preschool children (n = 549, 42.20%), with the distal phalanx of the third finger being the most common site (n = 73, 15.57%). The number of fractures in adolescents was the lowest (n = 158, 12.14%), and the most common fracture site was the proximal phalanx of the fifth finger (n = 45, 29.61%). Of the 1561 fractures, 1143 occurred in the hands and 418 in the feet. The most and least common first-level fracture sites among hand fractures were the fifth (n = 300, 26.25%) and first (n = 138, 12.07%) fingers, respectively. The most and least common first-level foot fracture locations were the first (n = 83, 19.86%) and fourth (n = 26, 6.22%) toes, respectively. The most common first-level and second level etiologies were life related injuries (n = 1128, 86.70%) and clipping injuries (n = 428, 32.90%), respectively. The incidence of sports injuries gradually increased with age, accounting for the highest proportion in adolescents (26.58%). Hand and foot fractures had many accompanying injuries, with the top three being nail bed injuries (570 cases, 36.52%), growth plate injuries (296 cases, 18.96%), and distal severed fracture (167 cases, 10.70%). Among the 296 growth plate injuries, 246 occurred on the hands and 50 on the feet. CONCLUSIONS: In contrast to previous epidemiological studies on pediatric hand and foot fractures, we mapped the locations of these fractures, including proximal, shaft, distal, and epiphyseal plate injuries. We analyzed the changing trends in fracture sites and injury etiologies with age. Hand and foot fractures have many accompanying injuries that require attention during diagnosis and treatment. Doctors should formulate accident protection measures for children of different ages, strengthen safety education, and reduce the occurrence of accidental injuries.


Asunto(s)
Traumatismos de los Pies , Fracturas Óseas , Traumatismos de la Mano , Huesos del Metacarpo , Fracturas de Salter-Harris , Masculino , Preescolar , Lactante , Femenino , Adolescente , Niño , Humanos , Estudios Retrospectivos , Fracturas de Salter-Harris/complicaciones , Fracturas Óseas/epidemiología , Fracturas Óseas/etiología , Fracturas Óseas/diagnóstico , Traumatismos de la Mano/epidemiología , Traumatismos de la Mano/etiología , Traumatismos de la Mano/terapia , Huesos del Metacarpo/lesiones , Traumatismos de los Pies/epidemiología , Traumatismos de los Pies/etiología , Traumatismos de los Pies/terapia
2.
Angew Chem Int Ed Engl ; : e202407192, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38787611

RESUMEN

Formamidinium-lead triiodide (FAPbI3) perovskite holds promise as a prime candidate in the realm of perovskite photovoltaics. However, the photo-active α-FAPbI3 phase, existing as a metastable state, is observable solely at elevated temperatures and is susceptible to degradation into the δ-phase in ambient air. Therefore, the attainment of phase-stable α-FAPbI3 in ambient conditions has become a crucial objective in perovskite research. Here, we proposed an efficient conversion process of PbI2 into the α-FAPbI3 perovskites in ambient air. This conversion was facilitated by the introduction of chelating molecules, which interacted with PbI2 to form an intermediate phase. Due to the reduced formation barrier resulting from the altered reaction pathway, this stable intermediate phase transitioned directly into α-FAPbI3 upon the deposition of the organic cation solution, effectively bypassing the formation of δ-FAPbI3. Consequently, the ambient-fabricated FAPbI3 perovskite solar cells (PSCs) exhibited an outstanding power conversion efficiency of 25.08%, along with a high open-circuit voltage of 1.19 V. Furthermore, the unencapsulated devices demonstrated remarkable environmental stability. Notably, this innovative approach promises broad applicability across various chelating molecules, opening new avenues for further progress in the ambient air fabrication of FAPbI3 PSCs.

3.
Angew Chem Int Ed Engl ; 61(19): e202117067, 2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35148011

RESUMEN

Formamidinium (FA) based perovskites are considered as one of the most promising light-absorbing perovskite materials owing to their narrower band gap and better thermal stability compared to conventional methylammonium-based perovskites. Constant improvement by using various additives stimulates the potential application of these perovskites. Amine molecules with different structures have been widely used as typical additives in FA-based perovskite solar cells, and decent performances have been achieved. Thus, a systematic review focusing on structural regulation and functional construction of amines in FA-based perovskites is of significance. Herein, we analyze the construction mechanism of different structural amines on the functional perovskite crystals. The influence of amine molecules on specific perovskite properties including defect conditions, charge transfer, and moisture resistance are evaluated. Finally, we summarize the design rules of amine molecules for the application in high-performance FA-based perovskites and propose directions for the future development of additive molecules.

4.
Small ; 13(8)2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27943615

RESUMEN

Perovskite single-crystalline microplate arrays are directly achieved in large scale by inkjet printing, which present high performance lasing property with quality factors up to 863 and RGB (red-green-blue) emission. This facile, nonlithographic method makes its promising applications on multi-integrated coherent light sources and other high-performance integrated optoelectronic applications.

5.
Phys Chem Chem Phys ; 19(8): 5746-5752, 2017 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-27918019

RESUMEN

Nowadays, environmental pollution is a big problem. Metal organic frameworks (MOFs) provide a novel strategy for exhaust gases adsorption and toxic pollutants removal. We proposed a facile and versatile method to prepare a highly efficient three dimensional MOF-sponge by coating MOF crystals on polyurethane sponge surface, mimicking the porous structure of the marine animal, sponge. Owing to combination of the spatial structure of the commercial sponge and the excellent adsorption capacity of MOF coatings, the MOF-sponge possessed good permeability and high dynamic adsorption capacity. Dynamic adsorption ability of the prepared Cu3(BTC)2-sponge was demonstrated by flowing gas-mixtures of NH3/N2 and an aquatic solution of Rhodamine B through it, with a capacity of 101.6 mg g-1 and 8.8 mg g-1 for NH3 and Rhodamine B, respectively.

6.
Small ; 11(14): 1649-54, 2015 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-25641755

RESUMEN

Fluorescent quantum dot nanocomposites, including polymer and photonic crystal quantum dots, have been fabricated by reactive inkjet printing. This reactive inkjet printing method has the potential to be broadened to fabrication of other functional nanomaterials, which will find promising applications in optoelectronic devices.

7.
Nanomicro Lett ; 15(1): 187, 2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37515723

RESUMEN

Multifunctional photodetectors boost the development of traditional optical communication technology and emerging artificial intelligence fields, such as robotics and autonomous driving. However, the current implementation of multifunctional detectors is based on the physical combination of optical lenses, gratings, and multiple photodetectors, the large size and its complex structure hinder the miniaturization, lightweight, and integration of devices. In contrast, perovskite materials have achieved remarkable progress in the field of multifunctional photodetectors due to their diverse crystal structures, simple morphology manipulation, and excellent optoelectronic properties. In this review, we first overview the crystal structures and morphology manipulation techniques of perovskite materials and then summarize the working mechanism and performance parameters of multifunctional photodetectors. Furthermore, the fabrication strategies of multifunctional perovskite photodetectors and their advancements are highlighted, including polarized light detection, spectral detection, angle-sensing detection, and self-powered detection. Finally, the existing problems of multifunctional detectors and the perspectives of their future development are presented.

8.
RSC Adv ; 12(7): 3924-3930, 2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35425414

RESUMEN

Paper is ubiquitous in the daily life and has been widely used for writing and drawing because of their low-cost, widely accessible, and degradable properties. However, simple ways to fabricate paper-based optoelectronic devices remain a great challenge. In this work, we report a facile method to fabricate high-quality perovskite films and optoelectronic devices on paper by direct pen-writing. Through introducing seed layers on papers, planar-integrated single-crystal perovskite films are easily prepared using commercial pens. Based on such a simple and convenient method, perovskite photodetector arrays and image sensors with graphite electrodes are fabricated on paper, and show satisfactory performances. This method provides a simple and effective approach for preparation of paper-based perovskite devices. It will be of significance for the development of degradable optoelectronic devices.

9.
ACS Appl Mater Interfaces ; 12(19): 22157-22162, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32312039

RESUMEN

Metal halide perovskites are promising light-emitting materials for applications such as wearable lighting devices and flat panel displays because of their high photoluminescence efficiency, high color purity, and facile solution processability. However, the intrinsic ambient instability and crystal friability issues have fundamentally hindered the practical applications of perovskites. Here, we solve this problem through a liquid to liquid self-encapsulation inkjet-printing technique. Perovskite inks are directly inkjet-printed into the liquid polydimethylsiloxane (PDMS) precursor to in situ form the self-encapsulation perovskite single-crystal-embedded PDMS structure. We show that the space-confined effect of the liquid PDMS precursor can significantly retard the perovskite crystallization process and promote the embedded growth of perovskite single crystals in PDMS. Benefiting from the sealing function of PDMS, the printed perovskite single crystals show excellent ambient stability and flexibility. Furthermore, we demonstrate that wafer-scale air-stable and flexible perovskite fluorescent patterns can be produced in PDMS by direct inkjet printing, which is cost-effective and free of complex microfabrication processes. This method provides a facile approach to scalable fabrication of air-stable and wearable perovskite fluorescent patterns, which will be of great significance for potential application in perovskite light-emitting diode display.

10.
Adv Mater ; 32(17): e1908006, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32166844

RESUMEN

Inorganic perovskite single crystals have emerged as promising vapor-phase processable structures for optoelectronic devices. However, because of material lattice mismatch and uncontrolled nucleation, vapor-phase methods have been restricted to random distribution of single crystals that are difficult to perform for integrated device arrays. Herein, an effective strategy to control the vapor-phase growth of high-quality cesium lead bromide perovskite (CsPbBr3 ) microplate arrays with uniform morphology as well as controlled location and size is reported. By introducing perovskite seeds on substrates, intractable lattice mismatches and random nucleation barriers are surpassed, and the epitaxial growth of perovskite crystals is accurately controlled. It is further demonstrated that CsPbBr3 microplate arrays can be monolithically integrated on substrates for the fabrication of high-performance lasers and photodetectors. This strategy provides a facile approach to fabricate high-quality CsPbBr3 microplates with controllable size and location, which offers new opportunities for the scalable production of integrated optoelectronic devices.

11.
Nat Commun ; 11(1): 5402, 2020 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-33159051

RESUMEN

Defects from grain interiors and boundaries of perovskite films cause significant nonradiative recombination energy loss, and thus perovskite films with controlled crystallinity and large grains is critical for improvement of both photovoltaic performance and stability for perovskite-based solar cells. Here, a methylamine (MA0) gas-assisted crystallization method is developed for fabrication of methylammonium lead iodide (MAPbI3) perovskite films. In the process, the perovskite film is formed via controlled release of MA0 gas molecules from a liquid intermediate phase MAPbI3·xMA0. The resulting perovskite film comprises millimeter-sized grains with (110)-uniaxial crystallographic orientation, exhibiting much low trap density, long carrier lifetime, and excellent environmental stability. The corresponding perovskite solar cell exhibits a power conversion efficiency (PCE) of ~ 21.36%, which is among the highest reported for MAPbI3-based devices. This method provides important progress towards the fabrication of high-quality perovskite thin films for low-cost, highly efficient and stable perovskite solar cells.

12.
Sci Adv ; 4(6): eaat2390, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29963635

RESUMEN

Perovskite single-crystal films, which exhibit exceptionally low trap density and nearly perfect translational symmetry, are believed to achieve the highest performance of perovskite-based optoelectronic devices. However, fabrication of these perovskite single-crystal films is quite difficult because of the uncontrollable nucleation caused by the rapid reaction of two perovskite precursors. We report a facile seed printing approach to selectively create millimeter-sized perovskite single-crystal films with controlled thickness and high yield. We show that perovskite single-crystal films can be perfectly transferred to almost arbitrary substrates through the printing process. The as-grown perovskite single-crystal films have excellent crystalline quality and morphology. We further demonstrate that perovskite single-crystal films can be directly printed for scalable fabrication of photodetectors and effective image sensors. This strategy allows high-yield fabrication of large perovskite single-crystal films for functional devices and may extend to other solution-processed materials for wide applications.

13.
J Clin Pharmacol ; 54(6): 688-95, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24399744

RESUMEN

Benfotiamine is a lipid-soluble thiamine precursor which can transform to thiamine in vivo and subsequently be metabolized to thiamine monophosphate (TMP) and thiamine diphosphate (TDP). This study investigated the pharmacokinetic profiles of thiamine and its phosphorylated metabolites after single- and multiple-dose administration of benfotiamine in healthy Chinese volunteers, and assessed the bioavailability of orally benfotiamine administration compared to thiamine hydrochloride. In addition, concentration of hippuric acid in urine which is produced in the transformation process of benfotiamine was determined. The results showed that thiamine and its phosphorylated metabolites exhibited different pharmacokinetic characteristics in plasma, blood and erythrocyte, and one-compartment model provided the best fit for pharmacokinetic profiles of thiamine. The transformation process of benfotiamine to thiamine produced large amount of hippuric acid. No accumulation of hippuric acid was observed after multiple-dose of benfotiamine. Compared to thiamine hydrochloride, the bioavailability of thiamine in plasma and TDP in erythrocyte after oral administration of benfotiamine were 1147.3 ± 490.3% and 195.8 ± 33.8%, respectively. The absorption rate and extent of benfotiamine systemic availability of thiamine were significantly increased indicating higher bioavailability of thiamine from oral dose of benfotiamine compared to oral dose of thiamine hydrochloride.


Asunto(s)
Tiamina/análogos & derivados , Administración Oral , Adulto , Disponibilidad Biológica , Estudios Cruzados , Femenino , Hipuratos/orina , Humanos , Masculino , Tiamina/sangre , Tiamina/farmacocinética , Adulto Joven
14.
J Pharm Biomed Anal ; 56(3): 637-40, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21802236

RESUMEN

Nifeviroc is a novel CCR5 antagonist used for the treatment of HIV type-1 infection. A LC-ESI-MS/MS method for the determination of nifeviroc in human plasma was developed and validated. The calibration curve (r(2)=0.9993) of nifeviroc was established at the range of 1.924-2935 µg L(-1). The intra- and inter-day precisions (RSD%) were all less than 7%, and the accuracies at three concentration levels were all within 100 ± 5%. This validated method was then successfully applied to a pharmacokinetic study in health Chinese volunteers.


Asunto(s)
Antagonistas de los Receptores CCR5 , Carbamatos/sangre , Carbamatos/farmacocinética , Cromatografía Liquida/métodos , Pirrolidinas/sangre , Pirrolidinas/farmacocinética , Espectrometría de Masa por Ionización de Electrospray/métodos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Calibración , Humanos , Persona de Mediana Edad , Placebos , Estándares de Referencia , Reproducibilidad de los Resultados , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA