Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Mol Cell Proteomics ; 21(10): 100406, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36030044

RESUMEN

Latent liver stages termed hypnozoites cause relapsing Plasmodium vivax malaria infection and represent a major obstacle in the goal of malaria elimination. Hypnozoites are clinically undetectable, and presently, there are no biomarkers of this persistent parasite reservoir in the human liver. Here, we have identified parasite and human proteins associated with extracellular vesicles (EVs) secreted from in vivo infections exclusively containing hypnozoites. We used P. vivax-infected human liver-chimeric (huHEP) FRG KO mice treated with the schizonticidal experimental drug MMV048 as hypnozoite infection model. Immunofluorescence-based quantification of P. vivax liver forms showed that MMV048 removed schizonts from chimeric mice livers. Proteomic analysis of EVs derived from FRG huHEP mice showed that human EV cargo from infected FRG huHEP mice contain inflammation markers associated with active schizont replication and identified 66 P. vivax proteins. To identify hypnozoite-specific proteins associated with EVs, we mined the proteome data from MMV048-treated mice and performed an analysis involving intragroup and intergroup comparisons across all experimental conditions followed by a peptide compatibility analysis with predicted spectra to warrant robust identification. Only one protein fulfilled this stringent top-down selection, a putative filamin domain-containing protein. This study sets the stage to unveil biological features of human liver infections and identify biomarkers of hypnozoite infection associated with EVs.


Asunto(s)
Vesículas Extracelulares , Malaria Vivax , Parásitos , Humanos , Ratones , Animales , Malaria Vivax/tratamiento farmacológico , Malaria Vivax/parasitología , Plasmodium vivax , Proteómica , Proteoma , Filaminas , Hígado , Biomarcadores , Espectrometría de Masas
2.
Clin Immunol ; 234: 108913, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34954347

RESUMEN

Chagas disease has a complex pathogenesis wherein the host immune response is essential for controlling its development. Suppressor of cytokine signaling(SOCS)2 is a crucial protein that regulates cytokine production. In this study, SOCS2 deficiency resulted in an initial imbalance of IL12- and IL-10-producing neutrophils and dendritic cells (DCs), which caused a long-lasting impact reducing inflammatory neutrophils and DCs, and tolerogenic DCs at the peak of acute disease. A reduced number of inflammatory and pro-resolving macrophages, and IL17A-producing CD4+ T cells, and increased lymphocyte apoptosis was found in SOCS2-deficient mice. Electrocardiogram analysis of chimeric mice showed that WT mice that received SOCS2 KO bone marrow transplantation presented increased heart dysfunction. Taken together, the results demonstrated that SOCS2 is a crucial regulator of the immune response during Trypanosoma cruzi infection, and suggest that a SOCS2 genetic polymorphism, or failure of its expression, may increase the susceptibility of cardiomyopathy development in Chagasic patients.


Asunto(s)
Cardiomiopatías/etiología , Enfermedad de Chagas/inmunología , Células Dendríticas/inmunología , Neutrófilos/inmunología , Proteínas Supresoras de la Señalización de Citocinas/fisiología , Animales , Trasplante de Médula Ósea , Enfermedad de Chagas/complicaciones , Femenino , Ratones , Ratones Endogámicos C57BL , Bazo/inmunología , Proteínas Supresoras de la Señalización de Citocinas/genética , Células Th17/inmunología
3.
J Eukaryot Microbiol ; 69(6): e12897, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35175680

RESUMEN

Kinetoplastea and Diplonemea possess peroxisome-related organelles that, uniquely, contain most of the enzymes of the glycolytic pathway and are hence called glycosomes. Enzymes of several other core metabolic pathways have also been located in glycosomes, in addition to some characteristic peroxisomal systems such as pathways of lipid metabolism. A considerable amount of research has been performed on glycosomes of trypanosomes since their discovery four decades ago. Not only the role of the glycosomal enzyme systems in the overall cell metabolism appeared to be unique, but also the organelles display remarkable features regarding their biogenesis and structural properties. These features are similar to those of the well-studied peroxisomes of mammalian and plant cells and yeasts yet exhibit also differences reflecting the large evolutionary distance between these protists and the representatives of other major eukaryotic lineages. Despite all research performed, many questions remain about various properties and the biological roles of glycosomes and peroxisomes. Here, we review the current knowledge about glycosomes, often comparing it with information about peroxisomes. Furthermore, we highlight particularly many questions that remain about the biogenesis, and the heterogeneity in structure and content of these enigmatic organelles, and the properties of their boundary membrane.


Asunto(s)
Microcuerpos , Trypanosoma , Animales , Microcuerpos/metabolismo , Peroxisomas/metabolismo , Trypanosoma/metabolismo , Euglenozoos , Homeostasis , Mamíferos
4.
Clin Immunol ; 226: 108713, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33711450

RESUMEN

Current chemical therapies for Chagas Disease (CD) lack ability to clear Trypanosoma cruzi (Tc) parasites and cause severe side effects, making search for new strategies extremely necessary. We evaluated the action of Tityus serrulatus venom (TsV) components during Tc infection. TsV treatment increased nitric oxide and pro-inflammatory cytokine production by Tc-infected macrophages (MØ), decreased intracellular parasite replication and trypomastigotes release, also triggering ERK1/2, JNK1/2 and p38 activation. Ts7 demonstrated the highest anti-Tc activity, inducing high levels of TNF and IL-6 in infected MØ. TsV/Ts7 presented synergistic effect on p38 activation when incubated with Tc antigen. KPP-treatment of MØ also decreased trypomastigotes releasing, partially due to p38 activation. TsV/Ts7-pre-incubation of Tc demonstrated a direct effect on parasite decreasing MØ-trypomastigotes releasing. In vivo KPP-treatment of Tc-infected mice resulted in decreased parasitemia. Summarizing, this study opens perspectives for new bioactive molecules as CD-therapeutic treatment, demonstrating the TsV/Ts7/KPP-trypanocidal and immunomodulatory activity during Tc infection.


Asunto(s)
Enfermedad de Chagas/tratamiento farmacológico , Inmunomodulación/efectos de los fármacos , Venenos de Escorpión/farmacología , Escorpiones/metabolismo , Animales , Enfermedad de Chagas/metabolismo , Femenino , Interleucina-6/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico/metabolismo , Factores de Necrosis Tumoral/metabolismo
5.
Biochim Biophys Acta ; 1863(5): 1038-48, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26384872

RESUMEN

Peroxisomes of organisms belonging to the protist group Kinetoplastea, which include trypanosomatid parasites of the genera Trypanosoma and Leishmania, are unique in playing a crucial role in glycolysis and other parts of intermediary metabolism. They sequester the majority of the glycolytic enzymes and hence are called glycosomes. Their glycosomal enzyme content can vary strongly, particularly quantitatively, between different trypanosomatid species, and within each species during its life cycle. Turnover of glycosomes by autophagy of redundant ones and biogenesis of a new population of organelles play a pivotal role in the efficient adaptation of the glycosomal metabolic repertoire to the sudden, major nutritional changes encountered during the transitions in their life cycle. The overall mechanism of glycosome biogenesis is similar to that of peroxisomes in other organisms, but the homologous peroxins involved display low sequence conservation as well as variations in motifs mediating crucial protein-protein interactions in the process. The correct compartmentalisation of enzymes is essential for the regulation of the trypanosomatids' metabolism and consequently for their viability. For Trypanosoma brucei it was shown that glycosomes also play a crucial role in its life-cycle regulation: a crucial developmental control switch involves the translocation of a protein phosphatase from the cytosol into the organelles. Many glycosomal proteins are differentially phosphorylated in different life-cycle stages, possibly indicative of regulation of enzyme activities as an additional means to adapt the metabolic network to the different environmental conditions encountered.


Asunto(s)
Autofagia , Leishmania/metabolismo , Microcuerpos/metabolismo , Biogénesis de Organelos , Proteínas Protozoarias/metabolismo , Trypanosoma/metabolismo , Animales , Regulación de la Expresión Génica , Glucólisis/genética , Humanos , Leishmania/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Microcuerpos/química , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte de Proteínas , Proteínas Protozoarias/genética , Especificidad de la Especie , Trypanosoma/genética
6.
Infect Immun ; 84(10): 3071-82, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27481250

RESUMEN

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor involved in controlling several aspects of immune responses, including the activation and differentiation of specific T cell subsets and antigen-presenting cells, thought to be relevant in the context of experimental Trypanosoma cruzi infection. The relevance of AhR for the outcome of T. cruzi infection is not known and was investigated here. We infected wild-type (WT) mice and AhR knockout (AhR KO) mice with T. cruzi (Y strain) and determined levels of parasitemia, myocardial inflammation and fibrosis, expression of AhR/cytokines/suppressor of cytokine signaling (SOCS) (spleen/heart), and production of nitric oxide (NO), reactive oxygen species (ROS), and peroxynitrite (ONOO(-)) (spleen). AhR expression was increased in the heart of infected WT mice. Infected AhR KO mice displayed significantly reduced parasitemia, inflammation, and fibrosis of the myocardium. This was associated with an anticipated increased immune response characterized by increased levels of inflammatory cytokines and reduced expression of SOCS2 and SOCS3 in the heart. In vitro, AhR deficiency caused impairment in parasite replication and decreased levels of ROS production. In conclusion, AhR influences the development of murine Chagas disease by modulating ROS production and regulating the expression of key physiological regulators of inflammation, SOCS1 to -3, associated with the production of cytokines during experimental T. cruzi infection.


Asunto(s)
Enfermedad de Chagas/fisiopatología , Citocinas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores de Hidrocarburo de Aril/fisiología , Trypanosoma cruzi/fisiología , Animales , Cardiomiopatía Chagásica/metabolismo , Cardiomiopatía Chagásica/patología , Enfermedad de Chagas/metabolismo , Enfermedad de Chagas/patología , Modelos Animales de Enfermedad , Ratones , Ratones Noqueados , Miocarditis/metabolismo , Miocarditis/patología , Óxido Nítrico/metabolismo , Ácido Peroxinitroso/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Bazo/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/metabolismo
7.
Brain Behav Immun ; 54: 73-85, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26765997

RESUMEN

Plasmodium falciparum infection results in severe malaria in humans, affecting various organs, including the liver, spleen and brain, and resulting in high morbidity and mortality. The Plasmodium berghei ANKA (PbA) infection in mice closely recapitulates many aspects of human cerebral malaria (CM); thus, this model has been used to investigate the pathogenesis of CM. Suppressor of cytokine signaling 2 (SOCS2), an intracellular protein induced by cytokines and hormones, modulates the immune response, neural development, neurogenesis and neurotrophic pathways. However, the role of SOCS2 during CM remains unknown. SOCS2 knockout (SOCS2(-/-)) mice infected with PbA show an initial resistance to infection with reduced parasitemia and production of TNF, TGF-ß, IL-12 and IL-17 in the brain. Interestingly, in the late phase of infection, SOCS2(-/-) mice display increased parasitemia and reduced Treg cell infiltration, associated with enhanced levels of Th1 and Th17 cells and related cytokines IL-17, IL-6, and TGF-ß in the brain. A significant reduction in protective neurotrophic factors, such as glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF), was also observed. Moreover, the molecular alterations in the brain of infected SOCS2(-/-) mice were associated with anxiety-related behaviors and cognition impairment. Mechanistically, these results revealed enhanced nitric oxide (NO) production in PbA-infected SOCS2(-/-) mice, and the inhibition of NO synthesis through l-NAME led to a marked decrease in survival, the disruption of parasitemia control and more pronounced anxiety-like behavior. Treatment with l-NAME also shifted the levels of Th1, Th7 and Treg cells in the brains of infected SOCS2(-/-) mice to the background levels observed in infected WT, with remarkable exception of increased CD8(+)IFN(+) T cells and inflammatory monocytes. These results indicate that SOCS2 plays a dual role during PbA infection, being detrimental in the control of the parasite replication but crucial in the regulation of the immune response and production of neurotrophic factors. Here, we provided strong evidence of a critical relationship between SOCS2 and NO in the orchestration of the immune response and development of CM during PbA infection.


Asunto(s)
Malaria Cerebral/inmunología , Proteínas Supresoras de la Señalización de Citocinas/inmunología , Animales , Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Malaria Cerebral/metabolismo , Malaria Cerebral/parasitología , Malaria Cerebral/terapia , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factores de Crecimiento Nervioso/metabolismo , Plasmodium berghei/aislamiento & purificación , Bazo/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/antagonistas & inhibidores , Proteínas Supresoras de la Señalización de Citocinas/deficiencia , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Linfocitos T Reguladores/metabolismo , Células Th17/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
8.
Biochim Biophys Acta ; 1833(12): 3076-3092, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23994617

RESUMEN

Trypanosomatids contain peroxisome-like organelles called glycosomes. Peroxisomal biogenesis involves a cytosolic receptor, PEX5, which, after its insertion into the organellar membrane, delivers proteins to the matrix. In yeasts and mammalian cells, transient PEX5 monoubiquitination at the membrane serves as the signal for its retrieval from the organelle for re-use. When its recycling is impaired, PEX5 is polyubiquitinated for proteasomal degradation. Stably monoubiquitinated TbPEX5 was detected in cytosolic fractions of Trypanosoma brucei, indicative for its role as physiological intermediate in receptor recycling. This modification's resistance to dithiothreitol suggests ubiquitin conjugation of a lysine residue. T. brucei PEX4, the functional homologue of the ubiquitin-conjugating (UBC) enzyme responsible for PEX5 monoubiquitination in yeast, was identified. It is associated with the cytosolic face of the glycosomal membrane, probably anchored by an identified putative TbPEX22. The involvement of TbPEX4 in TbPEX5 ubiquitination was demonstrated using procyclic ∆PEX4 trypanosomes. Surprisingly, glycosomal matrix protein import was only mildly affected in this mutant. Since other UBC homologues were upregulated, it might be possible that these have partially rescued PEX4's function in PEX5 ubiquitination. In addition, the altered expression of UBCs, notably of candidates involved in cell-cycle control, could be responsible for observed morphological and motility defects of the ∆PEX4 mutant.


Asunto(s)
Microcuerpos/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/metabolismo , Ubiquitinación , Animales , Línea Celular , Citosol/metabolismo , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Membranas Intracelulares/metabolismo , Estadios del Ciclo de Vida , Modelos Biológicos , Transporte de Proteínas , Proteínas Protozoarias/genética , Reproducibilidad de los Resultados , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/crecimiento & desarrollo , Trypanosoma brucei brucei/ultraestructura , Enzimas Ubiquitina-Conjugadoras/metabolismo
9.
Biochem Biophys Res Commun ; 431(1): 98-103, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23266609

RESUMEN

Glycolysis in kinetoplastid protists such as Trypanosoma brucei is compartmentalized in peroxisome-like organelles called glycosomes. Glycosomal matrix-protein import involves a cytosolic receptor, PEX5, which recognizes the peroxisomal-targeting signal type 1 (PTS1) present at the C-terminus of the majority of matrix proteins. PEX5 appears generally susceptible to in vitro proteolytic processing. On western blots of T. brucei, two PEX5 forms are detected with apparent M(r) of 100kDa and 72kDa. 5'-RACE-PCR showed that TbPEX5 is encoded by a unique transcript that can be translated into a protein of maximally 72kDa. However, recombinant PEX5 migrates aberrantly in SDS-PAGE with an apparent M(r) of 100kDa, similarly as observed for the native peroxin. In vitro protease susceptibility analysis of native and (35)S-labelled PEX5 showed truncation of the 100kDa form at the N-terminal side by unknown parasite proteases, giving rise to the 72kDa form which remains functional for PTS1 binding. The relevance of these observations is discussed.


Asunto(s)
Proteolisis , Proteínas Protozoarias/química , Receptores Citoplasmáticos y Nucleares/química , Trypanosoma brucei brucei/metabolismo , Péptido Hidrolasas/química , Receptor de la Señal 1 de Direccionamiento al Peroxisoma , Estructura Terciaria de Proteína , Proteínas Protozoarias/genética , Receptores Citoplasmáticos y Nucleares/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Trypanosoma brucei brucei/genética
10.
Parasitology ; 140(1): 1-20, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22914253

RESUMEN

Glycosomes are specialized peroxisomes found in all kinetoplastid organisms. The organelles are unique in harbouring most enzymes of the glycolytic pathway. Matrix proteins, synthesized in the cytosol, cofactors and metabolites have to be transported across the membrane. Recent research on Trypanosoma brucei has provided insight into how these translocations across the membrane occur, although many details remain to be elucidated. Proteins are imported by a cascade of reactions performed by specialized proteins, called peroxins, in which a cytosolic receptor with bound matrix protein inserts itself in the membrane to deliver its cargo into the organelle and is subsequently retrieved from the glycosome to perform further rounds of import. Bulky solutes, such as cofactors and acyl-CoAs, seem to be translocated by specific transporter molecules, whereas smaller solutes such as glycolytic intermediates probably cross the membrane through pore-forming channels. The presence of such channels is in apparent contradiction with previous results that suggested a low permeability of the glycosomal membrane. We propose 3 possible, not mutually exclusive, solutions for this paradox. Glycosomal glycolytic enzymes have been validated as drug targets against trypanosomatid-borne diseases. We discuss the possible implications of the new data for the design of drugs to be delivered into glycosomes.


Asunto(s)
Membranas Intracelulares/metabolismo , Microcuerpos/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma/metabolismo , Animales , Transporte Biológico , Descubrimiento de Drogas , Humanos , Transporte de Proteínas , Tripanocidas/química
11.
J Extracell Biol ; 2(10): e117, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38939734

RESUMEN

Parasites are responsible for the most neglected tropical diseases, affecting over a billion people worldwide (WHO, 2015) and accounting for billions of cases a year and responsible for several millions of deaths. Research on extracellular vesicles (EVs) has increased in recent years and demonstrated that EVs shed by pathogenic parasites interact with host cells playing an important role in the parasite's survival, such as facilitation of infection, immunomodulation, parasite adaptation to the host environment and the transfer of drug resistance factors. Thus, EVs released by parasites mediate parasite-parasite and parasite-host intercellular communication. In addition, they are being explored as biomarkers of asymptomatic infections and disease prognosis after drug treatment. However, most current protocols used for the isolation, size determination, quantification and characterization of molecular cargo of EVs lack greater rigor, standardization, and adequate quality controls to certify the enrichment or purity of the ensuing bioproducts. We are now initiating major guidelines based on the evolution of collective knowledge in recent years. The main points covered in this position paper are methods for the isolation and molecular characterization of EVs obtained from parasite-infected cell cultures, experimental animals, and patients. The guideline also includes a discussion of suggested protocols and functional assays in host cells.

12.
Biochem Biophys Res Commun ; 424(4): 781-5, 2012 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-22809509

RESUMEN

Trypanosoma brucei contains peroxisome-like organelles designated glycosomes because they sequester the major part of the glycolytic pathway. Import of proteins into the peroxisomal matrix involves a protein complex associated with the peroxisomal membrane of which PEX13 is a component. Two very different PEX13 isoforms have recently been identified in T. brucei. A striking feature of one of the isoforms, TbPEX13.1, is the presence of a C-terminal type 1 peroxisomal-targeting signal (PTS1), the tripeptide TKL, conserved in its orthologues in all members of the Trypanosomatidae family so far studied, but absent from TbPEX13.2 and the PEX13s in all other organisms. Despite their differences, both TbPEX13s function as part of a docking complex for cytosolic receptors with bound matrix proteins to be imported. We further characterized TbPEX13.1's function in glycosomal matrix-protein import. It provides a frame to anchor another docking complex component, PEX14, to the glycosomal membrane or information to correctly position it within the membrane. To investigate the possible function of the C-terminal TKL, we determined the topology of the C-terminal half of TbPEX13.1 in the membrane and show that its SH3 domain, located immediately adjacent to the PTS1, is at the cytosolic face.


Asunto(s)
Proteínas de la Membrana/metabolismo , Peroxisomas/metabolismo , Trypanosoma brucei brucei/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de la Membrana/genética , Transporte de Proteínas , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Interferencia de ARN
13.
J Immunol Res ; 2022: 5230603, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36033396

RESUMEN

Chagas disease, caused by the protozoa parasite Trypanosoma cruzi, is a neglected tropical disease and a major public health problem affecting more than 6 million people worldwide. Many challenges remain in the quest to control Chagas disease: the diagnosis presents several limitations and the two available treatments cause several side effects, presenting limited efficacy during the chronic phase of the disease. In addition, there are no preventive vaccines or biomarkers of therapeutic response or disease outcome. Trypomastigote form and T. cruzi-infected cells release extracellular vesicles (EVs), which are involved in cell-to-cell communication and can modulate the host immune response. Importantly, EVs have been described as promising tools for the development of new therapeutic strategies, such as vaccines, and for the discovery of new biomarkers. Here, we review and discuss the role of EVs secreted during T. cruzi infection and their immunomodulatory properties. Finally, we briefly describe their potential for biomarker discovery and future perspectives as vaccine development tools for Chagas Disease.


Asunto(s)
Enfermedad de Chagas , Vesículas Extracelulares , Trypanosoma cruzi , Biomarcadores , Humanos , Inmunidad
14.
Front Cell Dev Biol ; 10: 979269, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36172271

RESUMEN

One peculiarity of protists belonging to classes Kinetoplastea and Diplonemea within the phylum Euglenozoa is compartmentalisation of most glycolytic enzymes within peroxisomes that are hence called glycosomes. This pathway is not sequestered in peroxisomes of the third Euglenozoan class, Euglenida. Previous analysis of well-studied kinetoplastids, the 'TriTryps' parasites Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp., identified within glycosomes other metabolic processes usually not present in peroxisomes. In addition, trypanosomatid peroxins, i.e. proteins involved in biogenesis of these organelles, are divergent from human and yeast orthologues. In recent years, genomes, transcriptomes and proteomes for a variety of euglenozoans have become available. Here, we track the possible evolution of glycosomes by querying these databases, as well as the genome of Naegleria gruberi, a non-euglenozoan, which belongs to the same protist supergroup Discoba. We searched for orthologues of TriTryps proteins involved in glycosomal metabolism and biogenesis. Predicted cellular location(s) of each metabolic enzyme identified was inferred from presence or absence of peroxisomal-targeting signals. Combined with a survey of relevant literature, we refine extensively our previously postulated hypothesis about glycosome evolution. The data agree glycolysis was compartmentalised in a common ancestor of the kinetoplastids and diplonemids, yet additionally indicates most other processes found in glycosomes of extant trypanosomatids, but not in peroxisomes of other eukaryotes were either sequestered in this ancestor or shortly after separation of the two lineages. In contrast, peroxin divergence is evident in all euglenozoans. Following their gain of pathway complexity, subsequent evolution of peroxisome/glycosome function is complex. We hypothesize compartmentalisation in glycosomes of glycolytic enzymes, their cofactors and subsequently other metabolic enzymes provided selective advantage to kinetoplastids and diplonemids during their evolution in changing marine environments. We contend two specific properties derived from the ancestral peroxisomes were key: existence of nonselective pores for small solutes and the possibility of high turnover by pexophagy. Critically, such pores and pexophagy are characterised in extant trypanosomatids. Increasing amenability of free-living kinetoplastids and recently isolated diplonemids to experimental study means our hypothesis and interpretation of bioinformatic data are suited to experimental interrogation.

15.
Front Psychol ; 13: 906072, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36389475

RESUMEN

From March to September 2020, researchers working at a biomedical scientific campus in Spain faced two lockdowns and various mobility restrictions that affected their social and professional lifestyles. The working group "Women in Science," which acts as an independent observatory of scientific gender inequalities on campus launched an online survey to assess the impact of COVID-19 lockdowns on scientific activity, domestic and caregiving tasks, and psychological status. The survey revealed differences in scientific performance by gender: while male researchers participated in a larger number of scientific activities for career development, female researchers performed more invisible scientific tasks, including peer review or outreach activities. Mental impact was greater in researchers caring for children or dependents, and this was aggravated for women. Results spot a disproportionate impact of COVID-19 lockdowns on female scientific career development, and urges for equity measures to mitigate the consequences of an increase in the gender gap in biomedical sciences for current and future pandemics.

16.
Biochem Biophys Res Commun ; 412(2): 286-90, 2011 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-21820408

RESUMEN

Trypanosoma brucei, the etiologic agent of sleeping sickness, is exposed to important changes in nutrients and temperature during its life cycle. To adapt to these changes, the fluidity of its membranes plays a crucial role. This fluidity, mediated by the fatty-acid composition, is regulated by enzymes named desaturases. We have previously shown that the oleoyl desaturase is essential for Trypanosoma cruzi and T. brucei. In this work, we present experimental support for the relevance of stearoyl-CoA desaturase (SCD) for T. brucei's survival, in both its insect or procyclic-form (PCF) and bloodstream-form (BSF) stages. We evaluated this essentiality in two different ways: by generating a SCD knocked-down parasite line using RNA interference, and by chemical inhibition of the enzyme with two compounds, Isoxyl and a thiastearate with the sulfur atom at position 10 (10-TS). The effective concentration for 50% growth inhibition (EC(50)) of PCF was 1.0 ± 0.2 µM for Isoxyl and 5 ± 2 µM for 10-TS, whereas BSF appeared more susceptible with EC(50) values 0.10 ± 0.03 µM (Isoxyl) and 1.0 ± 0.6 µM (10-TS). RNA interference showed to be deleterious for both stages of the parasite. In addition, T. brucei-infected mice were fed with Isoxyl, causing a reduction of the parasitemia and an increase of the rodents' survival.


Asunto(s)
Parasitemia/microbiología , Estearoil-CoA Desaturasa/metabolismo , Trypanosoma brucei brucei/enzimología , Tripanosomiasis Africana/microbiología , Animales , Femenino , Técnicas de Silenciamiento del Gen , Ratones , Parasitemia/tratamiento farmacológico , Feniltiourea/análogos & derivados , Feniltiourea/uso terapéutico , Interferencia de ARN , Estearoil-CoA Desaturasa/genética , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei brucei/genética , Tripanosomiasis Africana/tratamiento farmacológico
17.
Sci Rep ; 11(1): 22099, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34764379

RESUMEN

The spleen is a hematopoietic organ that participates in cellular and humoral immunity. It also serves as a quality control mechanism for removing senescent and/or poorly deformable red blood cells (RBCs) from circulation. Pitting is a specialized process by which the spleen extracts particles, including malaria parasites, from within circulating RBCs during their passage through the interendothelial slits (IES) in the splenic cords. To study this physiological function in vitro, we have developed two microfluidic devices modeling the IES, according to the hypothesis that at a certain range of mechanical stress on the RBC, regulated through both slit size and blood flow, would force it undergo the pitting process without affecting the cell integrity. To prove its functionality in replicating pitting of malaria parasites, we have performed a characterization of P. falciparum-infected RBCs (P.f.-RBCs) after their passage through the devices, determining hemolysis and the proportion of once-infected RBCs (O-iRBCs), defined by the presence of a parasite antigen and absence of DAPI staining of parasite DNA using a flow cytometry-based approach. The passage of P.f.-RBCs through the devices at the physiological flow rate did not affect cell integrity and resulted in an increase of the frequency of O-iRBCs. Both microfluidic device models were capable to replicate the pitting of P.f.-RBCs ex vivo by means of mechanical constraints without cellular involvement, shedding new insights on the role of the spleen in the pathophysiology of malaria.


Asunto(s)
Endotelio/parasitología , Dispositivos Laboratorio en un Chip/parasitología , Malaria Falciparum/parasitología , Parásitos/fisiología , Bazo/parasitología , Animales , Biomimética/métodos , Eritrocitos/parasitología , Hemólisis/fisiología , Humanos , Plasmodium falciparum/fisiología
18.
Front Cell Infect Microbiol ; 11: 811390, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35141172

RESUMEN

Plasmodium vivax is the most widely distributed human malaria parasite with 7 million annual clinical cases and 2.5 billion people living under risk of infection. There is an urgent need to discover new antigens for vaccination as only two vaccine candidates are currently in clinical trials. Extracellular vesicles (EVs) are small membrane-bound vesicles involved in intercellular communication and initially described in reticulocytes, the host cell of P. vivax, as a selective disposal mechanism of the transferrin receptor (CD71) in the maturation of reticulocytes to erythrocytes. We have recently reported the proteomics identification of P. vivax proteins associated to circulating EVs in P. vivax patients using size exclusion chromatography followed by mass spectrometry (MS). Parasite proteins were detected in only two out of ten patients. To increase the MS signal, we have implemented the direct immuno-affinity capture (DIC) technique to enrich in EVs derived from CD71-expressing cells. Remarkably, we identified parasite proteins in all patients totaling 48 proteins and including several previously identified P. vivax vaccine candidate antigens (MSP1, MSP3, MSP7, MSP9, Serine-repeat antigen 1, and HSP70) as well as membrane, cytosolic and exported proteins. Notably, a member of the Plasmodium helical interspersed sub-telomeric (PHIST-c) family and a member of the Plasmodium exported proteins, were detected in five out of six analyzed patients. Humoral immune response analysis using sera from vivax patients confirmed the antigenicity of the PHIST-c protein. Collectively, we showed that enrichment of EVs by CD71-DIC from plasma of patients, allows a robust identification of P. vivax immunogenic proteins. This study represents a significant advance in identifying new antigens for vaccination against this human malaria parasite.


Asunto(s)
Vesículas Extracelulares , Malaria Vivax , Anticuerpos Antiprotozoarios , Antígenos de Protozoos , Eritrocitos/parasitología , Vesículas Extracelulares/metabolismo , Humanos , Malaria Vivax/parasitología , Plasmodium vivax , Proteínas Protozoarias/metabolismo , Reticulocitos/metabolismo , Reticulocitos/parasitología
19.
Front Cell Infect Microbiol ; 11: 596104, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33732657

RESUMEN

The spleen is a secondary lymphoid organ with multiple functions including the removal of senescent red blood cells and the coordination of immune responses against blood-borne pathogens, such as malaria parasites. Despite the major role of the spleen, the study of its function in humans is limited by ethical implications to access human tissues. Here, we employed multiparameter flow cytometry combined with cell purification techniques to determine human spleen cell populations from transplantation donors. Spleen immuno-phenotyping showed that CD45+ cells included B (30%), CD4+ T (16%), CD8+ T (10%), NK (6%) and NKT (2%) lymphocytes. Myeloid cells comprised neutrophils (16%), monocytes (2%) and DCs (0.3%). Erythrocytes represented 70%, reticulocytes 0.7% and hematopoietic stem cells 0.02%. Extracellular vesicles (EVs) are membrane-bound nanoparticles involved in intercellular communication and secreted by almost all cell types. EVs play several roles in malaria that range from modulation of immune responses to vascular alterations. To investigate interactions of plasma-derived EVs from Plasmodium vivax infected patients (PvEVs) with human spleen cells, we used size-exclusion chromatography (SEC) to separate EVs from the bulk of soluble plasma proteins and stained isolated EVs with fluorescent lipophilic dyes. The integrated cellular analysis of the human spleen and the methodology employed here allowed in vitro interaction studies of human spleen cells and EVs that showed an increased proportion of T cells (CD4+ 3 fold and CD8+ 4 fold), monocytes (1.51 fold), B cells (2.3 fold) and erythrocytes (3 fold) interacting with PvEVs as compared to plasma-derived EVs from healthy volunteers (hEVs). Future functional studies of these interactions can contribute to unveil pathophysiological processes involving the spleen in vivax malaria.


Asunto(s)
Vesículas Extracelulares , Malaria Vivax , Citometría de Flujo , Humanos , Plasmodium vivax , Bazo
20.
Artículo en Inglés | MEDLINE | ID: mdl-32083023

RESUMEN

Glycosomes are peroxisome-related organelles that have been identified in kinetoplastids and diplonemids. The hallmark of glycosomes is their harboring of the majority of the glycolytic enzymes. Our biochemical studies and proteome analysis of Trypanosoma cruzi glycosomes have located, in addition to enzymes of the glycolytic pathway, enzymes of several other metabolic processes in the organelles. These analyses revealed many aspects in common with glycosomes from other trypanosomatids as well as features that seem specific for T. cruzi. Their enzyme content indicates that T. cruzi glycosomes are multifunctional organelles, involved in both several catabolic processes such as glycolysis and anabolic ones. Specifically discussed in this minireview are the cross-talk between glycosomal metabolism and metabolic processes occurring in other cell compartments, and the importance of metabolite translocation systems in the glycosomal membrane to enable the coordination between the spatially separated processes. Possible mechanisms for metabolite translocation across the membrane are suggested by proteins identified in the organelle's membrane-homologs of the ABC and MCF transporter families-and the presence of channels as inferred previously from the detection of channel-forming proteins in glycosomal membrane preparations from the related parasite T. brucei. Together, these data provide insight in the way in which different parts of T. cruzi metabolism, although uniquely distributed over different compartments, are integrated and regulated. Moreover, this information reveals opportunities for the development of drugs against Chagas disease caused by these parasites and for which currently no adequate treatment is available.


Asunto(s)
Enfermedad de Chagas , Trypanosoma brucei brucei , Trypanosoma cruzi , Enfermedad de Chagas/metabolismo , Glucólisis , Humanos , Microcuerpos , Orgánulos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA