Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioorg Med Chem ; 47: 116358, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34479103

RESUMEN

Bruton tyrosine kinase (BTK) is a key kinase in the B cell antigen receptor signal transduction pathway, which is involved in the regulation of the proliferation, differentiation and apoptosis of B cells. BTK has become a significant target for the treatment of hematological malignancies and autoimmune diseases. Ibrutinib, the first-generation BTK inhibitor, has made a great contribution to the treatment of B cell malignant tumors, but there are still some problems such as resistance or miss target of site mutation. Therefore, there is an imperative need to develop novel BTK inhibitors to overcome these problems. Besides, proteolysis targeting chimera (PROTAC) technology has been successfully applied to the development of BTK degradation agents, which has opened a fresh way for the BTK targeted treatment. This paper reviews the biological function of BTK, the discovery and development of BTK targeted drugs as a promising cancer therapy. It mainly reviews the binding sites and structural characteristics of BTK, structure-activity relationships, activity and drug resistance of BTK inhibitors, as well as potential treatment strategies to overcome the resistance of BTK, which provides a reference for the rational design and development of new powerful BTK inhibitors.


Asunto(s)
Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Antineoplásicos/farmacología , Desarrollo de Medicamentos , Inhibidores de Proteínas Quinasas/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Agammaglobulinemia Tirosina Quinasa/metabolismo , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química
2.
Molecules ; 26(16)2021 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-34443487

RESUMEN

The chalcone and quinoline scaffolds are frequently utilized to design novel anticancer agents. As the continuation of our work on effective anticancer agents, we assumed that linking chalcone fragment to the quinoline scaffold through the principle of molecular hybridization strategy could produce novel compounds with potential anticancer activity. Therefore, quinoline-chalcone derivatives were designed and synthesized, and we explored their antiproliferative activity against MGC-803, HCT-116, and MCF-7 cells. Among these compounds, compound 12e exhibited a most excellent inhibitory potency against MGC-803, HCT-116, and MCF-7 cells with IC50 values of 1.38, 5.34, and 5.21 µM, respectively. The structure-activity relationship of quinoline-chalcone derivatives was preliminarily explored in this report. Further mechanism studies suggested that compound 12e inhibited MGC-803 cells in a dose-dependent manner and the cell colony formation activity of MGC-803 cells, arrested MGC-803 cells at the G2/M phase and significantly upregulated the levels of apoptosis-related proteins (Caspase3/9 and cleaved-PARP) in MGC-803 cells. In addition, compound 12e could significantly induce ROS generation, and was dependent on ROS production to exert inhibitory effects on gastric cancer cells. Taken together, all the results suggested that directly linking chalcone fragment to the quinoline scaffold could produce novel anticancer molecules, and compound 12e might be a valuable lead compound for the development of anticancer agents.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Chalconas/síntesis química , Chalconas/farmacología , Diseño de Fármacos , Quinolinas/síntesis química , Quinolinas/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Chalconas/química , Humanos , Quinolinas/química , Especies Reactivas de Oxígeno/metabolismo , Relación Estructura-Actividad
3.
Eur J Med Chem ; 238: 114467, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35605363

RESUMEN

Novel coumarin-indole derivatives were designed, synthesized and evaluated as tubulin polymerization inhibitors targeting the colchicine binding site. Among these compounds, compound MY-413 displayed the most potent inhibitory activities against gastric cancer cell line MGC-803 with an IC50 value of 0.011 µM. Furthermore, the IC50 values of compound MY-413 was less than 0.1 µM for other 17 cancer cell lines and less than 0.05 µM for other 8 cancer cell lines. Compound MY-413 effectively inhibited the tubulin polymerization (IC50 = 2.46 µM) by binding to the colchicine site. Screening for the inhibitory effects of compound MY-413 on 61 kinases, it was found that compound MY-413 could inhibit MAPK pathways-related kinases. Because of the inhibitory effects of compound MY-413 on tubulin polymerization and MAPK signaling pathway, compound MY-413 induced cell apoptosis, arrested the cell cycle in the G2/M phase, induced the inhibition of cell proliferation and migration in gastric cancer cells MGC-803 and HGC-27. In addition, compound MY-413 could significantly inhibit tumor growth in MGC-803 xenograft tumor models with tumor growth inhibition (TGI) rates of 70% (15 mg/kg) and 80% (30 mg/kg) without obvious toxicity. Consistent with the in vitro results, compound MY-413 also inhibited MAPK signaling pathway, and induced apoptosis and proliferation inhibition in vivo. In conclusion, this work indicated that compound MY-413 was a promising lead compound for the further investigation as a potential anti-gastric cancer agent.


Asunto(s)
Antineoplásicos , Neoplasias Gástricas , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular , Colchicina/farmacología , Cumarinas/farmacología , Cumarinas/uso terapéutico , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Indoles/química , Indoles/farmacología , Polimerizacion , Neoplasias Gástricas/tratamiento farmacológico , Relación Estructura-Actividad , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA