Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Magn Reson Med ; 89(3): 908-921, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36404637

RESUMEN

PURPOSE: To evaluate feasibility and reproducibility of liver diffusion-weighted (DW) MRI using cardiac-motion-robust, blood-suppressed, reduced-distortion techniques. METHODS: DW-MRI data were acquired at 3T in an anatomically accurate liver phantom including controlled pulsatile motion, in eight healthy volunteers and four patients with known or suspected liver metastases. Standard monopolar and motion-robust (M1-nulled, and M1-optimized) DW gradient waveforms were each acquired with single-shot echo-planar imaging (ssEPI) and multishot EPI (msEPI). In the motion phantom, apparent diffusion coefficient (ADC) was measured in the motion-affected volume. In healthy volunteers, ADC was measured in the left and right liver lobes separately to evaluate ADC reproducibility between the two lobes. Image distortions were quantified using the normalized cross-correlation coefficient, with an undistorted T2-weighted reference. RESULTS: In the motion phantom, ADC mean and SD in motion-affected volumes substantially increased with increasing motion for monopolar waveforms. ADC remained stable in the presence of increasing motion when using motion-robust waveforms. M1-optimized waveforms suppressed slow flow signal present with M1-nulled waveforms. In healthy volunteers, monopolar waveforms generated significantly different ADC measurements between left and right liver lobes ( p = 0 . 0078 $$ p=0.0078 $$ , reproducibility coefficients (RPC) =  470 × 1 0 - 6 $$ 470\times 1{0}^{-6} $$ mm 2 $$ {}^2 $$ /s for monopolar-msEPI), while M1-optimized waveforms showed more reproducible ADC values ( p = 0 . 29 $$ p=0.29 $$ , RPC = 220 × 1 0 - 6 $$ \mathrm{RPC}=220\times 1{0}^{-6} $$ mm 2 $$ {}^2 $$ /s for M1-optimized-msEPI). In phantom and healthy volunteer studies, motion-robust acquisitions with msEPI showed significantly reduced image distortion ( p < 0 . 001 $$ p<0.001 $$ ) compared to ssEPI. Patient scans showed reduction of wormhole artifacts when combining M1-optimized waveforms with msEPI. CONCLUSION: Synergistic effects of combined M1-optimized diffusion waveforms and msEPI acquisitions enable reproducible liver DWI with motion robustness, blood signal suppression, and reduced distortion.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Neoplasias Hepáticas , Humanos , Imagen de Difusión por Resonancia Magnética/métodos , Reproducibilidad de los Resultados , Movimiento (Física) , Neoplasias Hepáticas/diagnóstico por imagen , Imagen Eco-Planar/métodos
2.
J Magn Reson Imaging ; 58(3): 951-962, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36583628

RESUMEN

BACKGROUND: Diffusion-weighted imaging (DWI) may allow for breast cancer screening MRI without a contrast injection. Multishot methods improve prone DWI of the breasts but face different challenges in the supine position. PURPOSE: To establish a multishot DWI (msDWI) protocol for supine breast MRI and to evaluate the performance of supine vs. prone msDWI. STUDY TYPE: Prospective. POPULATION: Protocol optimization: 10 healthy women (ages 22-56), supine vs. prone: 24 healthy women (ages 22-62) and five women (ages 29-61) with breast tumors. FIELD STRENGTH/SEQUENCE: 3-T, protocol optimization msDWI: free-breathing (FB) 2-shots, FB 4-shots, respiratory-triggered (RT) 2-shots, RT 4-shots, supine vs. prone: RT 4-shot msDWI, T2-weighted fast-spin echo. ASSESSMENT: Protocol optimization and supine vs. prone: three observers performed an image quality assessment of sharpness, aliasing, distortion (vs. T2), perceived SNR, and overall image quality (scale of 1-5). Apparent diffusion coefficients (ADCs) in fibroglandular tissue (FGT) and breast tumors were measured. STATISTICAL TESTS: Effect of study variables on dichotomized ratings (4/5 vs. 1/2/3) and FGT ADCs were assessed with mixed-effects logistic regression. Interobserver agreement utilized Gwet's agreement coefficient (AC). Lesion ADCs were assessed by Bland-Altman analysis and concordance correlation (ρc ). P value <0.05 was considered statistically significant. RESULTS: Protocol optimization: 4-shots significantly improved sharpness and distortion; RT significantly improved sharpness, aliasing, perceived SNR, and overall image quality. FGT ADCs were not significantly different between shots (P = 0.812), FB vs. RT (P = 0.591), or side (P = 0.574). Supine vs. prone: supine images were rated significantly higher for sharpness, aliasing, and overall image quality. FGT ADCs were significantly higher supine; lesion ADCs were highly correlated (ρc  = 0.92). DATA CONCLUSION: Based on image quality, supine msDWI outperformed prone msDWI. Lesion ADCs were highly correlated between the two positions, while FGT ADCs were higher in the supine position. EVIDENCE LEVEL: 2. TECHNICAL EFFICACY: Stage 1.


Asunto(s)
Neoplasias de la Mama , Imagen de Difusión por Resonancia Magnética , Humanos , Femenino , Estudios Prospectivos , Posición Prona , Imagen de Difusión por Resonancia Magnética/métodos , Imagen por Resonancia Magnética , Reproducibilidad de los Resultados , Neoplasias de la Mama/diagnóstico por imagen , Imagen Eco-Planar/métodos
3.
Neuroimage ; 225: 117442, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33039620

RESUMEN

BACKGROUND: Myelin specific imaging techniques to characterize white matter in demyelinating diseases such as multiple sclerosis (MS) have become an area of increasing focus. Gray matter myelination is an important marker of cortical microstructure, and its impairment is relevant in progressive MS. However, its assessment is challenging due to its thin layers. While myelin water imaging and ultra-short TE imaging have not yet been implemented to assess cortical myeloarchitecture, magnetization transfer (MT) shows promise. A recent development of the MT technique, ihMT, has demonstrated greater myelin sensitivity/specificity. Here we implemented a 3D ihMT acquisition and analysis to characterize cortical gray matter myeloarchitecture. METHODS: 20 young healthy volunteers were imaged with a 3D ihMTRAGE sequence and quantitative metrics of ihMT (ihMTsat), and dual frequency-offset MT (dual MTsat) were calculated. Cortical surface-based analysis of ihMTsat and dual MTsat were performed and compared. We also compared the cortical ihMTsat map to a cortical surface-based map of T1-weighted images (T1w), defined as a proxy of myelin content. RESULTS: Cortical ihMTsat and dual MTsat maps were in qualitative agreement with previous work and the cortical T1w map, showing higher values in primary cortices and lower values in the insula. IhMTsat and dual MTsat were significantly correlated but with important regional differences. The ratio ihMTsat/dual MTsat highlighted higher ihMTsat values in the primary cortices and sulci. CONCLUSION: ihMTsat, a quantitative metric of ihMT, can be reliably measured in cortical gray matter and shows unique contrast between cortical regions.


Asunto(s)
Corteza Cerebral/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Vaina de Mielina , Adulto , Encéfalo/diagnóstico por imagen , Femenino , Voluntarios Sanos , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Sustancia Blanca/diagnóstico por imagen , Adulto Joven
4.
J Magn Reson Imaging ; 53(3): 807-817, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33067849

RESUMEN

BACKGROUND: Diffusion-weighted imaging (DWI) has shown promise to screen for breast cancer without a contrast injection, but image distortion and low spatial resolution limit standard single-shot DWI. Multishot DWI methods address these limitations but introduce shot-to-shot phase variations requiring correction during reconstruction. PURPOSE: To investigate the performance of two multishot DWI reconstruction methods, multiplexed sensitivity encoding (MUSE) and shot locally low-rank (shot-LLR), compared to single-shot DWI in the breast. STUDY TYPE: Prospective. POPULATION: A total of 45 women who consented to have multishot DWI added to a clinically indicated breast MRI. FIELD STRENGTH/SEQUENCES: Single-shot DWI reconstructed by parallel imaging, multishot DWI with four or eight shots reconstructed by MUSE and shot-LLR, 3D T2 -weighted imaging, and contrast-enhanced MRI at 3T. ASSESSMENT: Three blinded observers scored images for 1) general image quality (perceived signal-to-noise ratio [SNR], ghosting, distortion), 2) lesion features (discernment and morphology), and 3) perceived resolution. Apparent diffusion coefficient (ADC) of the lesion was also measured and compared between methods. STATISTICAL TESTS: Image quality features and perceived resolution were assessed with a mixed-effects logistic regression. Agreement among observers was estimated with a Krippendorf's alpha using linear weighting. Lesion feature ratings were visualized using histograms, and correlation coefficients of lesion ADC between different methods were calculated. RESULTS: MUSE and shot-LLR images were rated to have significantly better perceived resolution (P < 0.001), higher SNR (P < 0.005), and a lower level of distortion (P < 0.05) with respect to single-shot DWI. Shot-LLR showed reduced ghosting artifacts with respect to both MUSE (P < 0.001) and single-shot DWI (P < 0.001). Eight-shot DWI had improved perceived SNR and perceived resolution with respect to four-shot DWI (P < 0.005). DATA CONCLUSION: Multishot DWI enables increased resolution and improved image quality with respect to single-shot DWI in the breast. Shot-LLR reconstructs multishot DWI with minimal ghosting artifacts. The improvement of multishot DWI in image quality increases with an increased number of shots. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 2.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Imagen Eco-Planar , Artefactos , Femenino , Humanos , Imagen por Resonancia Magnética , Estudios Prospectivos , Reproducibilidad de los Resultados
5.
Neuroimage ; 223: 117371, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32931943

RESUMEN

BACKGROUND: Arterial Spin Labeling (ASL) MRI can provide quantitative images that are sensitive to both time averaged blood flow and its temporal fluctuations. 3D image acquisitions for ASL are desirable because they are more readily compatible with background suppression to reduce noise, can reduce signal loss and distortion, and provide uniform flow sensitivity across the brain. However, single-shot 3D acquisition for maximal temporal resolution typically involves degradation of image quality through blurring or noise amplification by parallel imaging. Here, we report a new approach to accelerate a common stack of spirals 3D image acquisition by pseudo golden-angle rotation and compressed sensing reconstruction without any degradation of time averaged blood flow images. METHODS: 28 healthy volunteers were imaged at 3T with background-suppressed unbalanced pseudo-continuous ASL combined with a pseudo golden-angle Stack-of-Spirals 3D RARE readout. A fully-sampled perfusion-weighted volume was reconstructed by 3D non-uniform Fast Fourier Transform (nuFFT) followed by sum-of-squares combination of the 32 individual channels. Coil sensitivities were estimated followed by reconstruction of the 39 single-shot volumes using an L1-wavelet Compressed-Sensing reconstruction. Finally, brain connectivity analyses were performed in regions where BOLD signal suffers from low signal-to-noise ratio and susceptibility artifacts. RESULTS: Image quality, assessed with a non-reference 3D blurring metric, of full time averaged blood flow was comparable to a conventional interleaved acquisition. The temporal resolution provided by the acceleration enabled identification and quantification of resting-state networks even in inferior regions such as the amygdala and inferior frontal lobes, where susceptibility artifacts can degrade conventional resting-state fMRI acquisitions. CONCLUSION: This approach can provide measures of blood flow modulations and resting-state networks for free within any research or clinical protocol employing ASL for resting blood flow.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/diagnóstico por imagen , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Adulto , Artefactos , Encéfalo/anatomía & histología , Femenino , Humanos , Masculino , Relación Señal-Ruido , Marcadores de Spin , Adulto Joven
6.
Magn Reson Med ; 84(6): 2964-2980, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32602958

RESUMEN

PURPOSE: To demonstrate the feasibility of integrating the magnetization transfer (MT) preparations required for inhomogeneous MT (ihMT) within an MPRAGE-style acquisition. Such a sequence allows for reduced power deposition and easy inclusion of other modules. METHODS: An ihMT MPRAGE-style sequence (ihMTRAGE) was initially simulated to investigate acquisition of the 3D ihMT data sequentially, or in an interleaved manner. The ihMTRAGE sequence was implemented on a 3T clinical scanner to acquire ihMT data from the brain and spine. RESULTS: Both simulations and in vivo data provided an ihMT signal that was significantly greater using a sequential ihMTRAGE acquisition, compared with an interleaved implementation. Comparison with a steady-state ihMT acquisition (defined as having one MT RF pulse between successive acquisition modules) demonstrated how ihMTRAGE allows for a reduction in average power deposition, or greater ihMT signal at equal average power deposition. Inclusion of a prospective motion-correction module did not significantly affect the ihMT signal obtained from regions of interest in the brain. The ihMTRAGE acquisition allowed combination with a spatial saturation module to reduce phase wrap artifacts in a cervical spinal cord acquisition. CONCLUSIONS: Use of preparations necessary for ihMT experiments within an MPRAGE-style sequence provides a useful alternative for acquiring 3D ihMT data. Compared with our steady-state implementation, ihMTRAGE provided reduced power deposition, while allowing use of the maximum intensity from off-resonance RF pulses. The 3D ihMTRAGE acquisition allowed combination of other modules with the preparation necessary for ihMT experiments, specifically motion compensation and spatial saturation modules.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Artefactos , Encéfalo/diagnóstico por imagen , Imagenología Tridimensional , Estudios Prospectivos
7.
Magn Reson Med ; 81(4): 2439-2449, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30474312

RESUMEN

PURPOSE: To assess the influence of background suppression and retrospective realignment on physiological noise and image quality in free-breathing renal pseudo-continuous arterial spin labeling (pCASL). METHODS: Ten subjects were scanned at 3T with a pCASL prepared single-slice coronal acquisition through the kidneys under free breathing. Multiple acquisitions were performed with various levels of residual background signal based on optimization of pulse timings to achieve specific background suppression levels (<2%, <5%, <10%, <20%). A retrospective non-rigid motion-correction strategy was also implemented. RESULTS: Decreasing level of residual background signal was associated with higher temporal SNR. The retrospective motion-correction provided an additional but not statistically significant improvement in tSNR. The highest image quality was obtained with the lowest level of residual background signal accompanied by the retrospective motion-correction, although no significant difference in quantitative renal blood-flow could be observed. CONCLUSIONS: Renal perfusion measurement with ASL under free breathing is feasible and robust against physiological noise when using strong background suppression strategies. Finally, retrospective motion-correction further improves image quality but cannot replace background suppression.


Asunto(s)
Arterias/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Riñón/irrigación sanguínea , Riñón/diagnóstico por imagen , Riñón/patología , Adulto , Algoritmos , Velocidad del Flujo Sanguíneo , Femenino , Voluntarios Sanos , Calor , Humanos , Aumento de la Imagen/métodos , Imagen por Resonancia Magnética , Masculino , Movimiento (Física) , Perfusión , Reproducibilidad de los Resultados , Respiración , Relación Señal-Ruido , Marcadores de Spin
8.
Magn Reson Med ; 82(2): 680-692, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30953396

RESUMEN

PURPOSE: To improve image quality and spatial coverage for abdominal perfusion imaging by implementing an arterial spin labeling (ASL) sequence that combines variable-density 3D fast-spin-echo (FSE) with Cartesian trajectory and compressed-sensing (CS) reconstruction. METHODS: A volumetric FSE sequence was modified to include background-suppressed pseudo-continuous ASL labeling and to support variable-density (VD) Poisson-disk sampling for acceleration. We additionally explored the benefits of center oversampling and variable outer k-space sampling. Fourteen healthy volunteers were scanned on a 3T scanner to test acceleration factors as well as the various sampling schemes described under synchronized-breathing to limit motion issues. A CS reconstruction was implemented using the BART toolbox to reconstruct perfusion-weighted ASL volumes, assessing the impact of acceleration, different reconstruction, and sampling strategies on image quality. RESULTS: CS acceleration is feasible with ASL, and a strong renal perfusion signal could be observed even at very high acceleration rates (≈15). We have shown that ASL k-space complex subtraction was desirable before CS reconstruction. Although averaging of multiple highly accelerated images helped to reduce artifacts from physiologic fluctuations, superior image quality was achieved by interleaving of different highly undersampled pseudo-random spatial sampling patterns and using 4D-CS reconstruction. Combination of these enhancements produces high-quality ASL volumes in under 5 min. CONCLUSIONS: High-quality isotropic ASL abdominal perfusion volumes can be obtained in healthy volunteers with a VD-FSE and CS reconstruction. This lays the groundwork for future developments toward whole abdomen free-breathing non-contrast perfusion imaging.


Asunto(s)
Abdomen/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Imagen de Perfusión/métodos , Adulto , Humanos , Riñón/diagnóstico por imagen , Fantasmas de Imagen , Marcadores de Spin , Adulto Joven
9.
Magn Reson Med ; 81(1): 542-550, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30229559

RESUMEN

PURPOSE: To demonstrate the feasibility of noninvasively measuring pancreatic perfusion using pseudocontinuous arterial spin labeling (ASL) and to derive quantitative blood-flow and transit-time measurements in healthy volunteers. METHODS: A pseudocontinuous ASL sequence with background suppression and a single-slice single-shot fast-spin-echo readout was acquired at 3 T in 10 subjects with a single standard postlabeling delay (PLD) of 1.5 s and in 4 additional subjects with 4 PLD from 0.7 to 2 s. An imaging synchronized breathing approach was used to minimize motion artifacts during the 3 min of acquisition. Scan-rescan reproducibility was assessed in 3 volunteers with single-delay ASL. Quantitative blood flow and arterial transit time (ATT) were derived and the impact of ATT correction was studied using either subject-specific ATT in the second group or an average ATT derived from the group with multidelay ASL for subjects with single-delay ASL. RESULTS: Successful ASL acquisitions were performed in all volunteers. An average pancreatic blood flow of 201 ± 40 mL/100 g/min was measured in the single-delay group using an assumed ATT of 750 ms Average ATT measured in the multidelay group was 1029 ± 89 ms Using the longer, measured ATT reduced the measured flow to 162 ± 12 and 168 ± 28 mL/100 g/min with subject-specific or average ATT correction, respectively. ASL signal heterogeneities were observed at shorter PLD, potentially linked to its complex vascular supply and islet distribution. CONCLUSIONS: ASL enables reliable measurement of pancreatic perfusion in healthy volunteers. It presents a valuable alternative to contrast-enhanced methods and may be useful for diagnosis and characterization of several inflammatory, metabolic, and neoplastic diseases affecting the pancreas.


Asunto(s)
Aorta Abdominal/diagnóstico por imagen , Imagen por Resonancia Magnética , Páncreas/diagnóstico por imagen , Marcadores de Spin , Adulto , Algoritmos , Artefactos , Femenino , Voluntarios Sanos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Inflamación , Masculino , Movimiento (Física) , Páncreas/irrigación sanguínea , Páncreas/patología , Neoplasias Pancreáticas/diagnóstico por imagen , Perfusión , Flujo Sanguíneo Regional , Reproducibilidad de los Resultados , Respiración , Relación Señal-Ruido , Factores de Tiempo , Adulto Joven
10.
Magn Reson Med ; 79(6): 2902-2911, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-28971512

RESUMEN

PURPOSE: To investigate the feasibility of substantially reducing acoustic noise while performing diffusion tensor imaging (DTI) on a compact 3T (C3T) MRI scanner equipped with a 42-cm inner-diameter asymmetric gradient. METHODS: A-weighted acoustic measurements were made using 10 mT/m-amplitude sinusoidal waveforms, corresponding to echo-planar imaging (EPI) echo spacing of 0.25 to 5.0 ms, on a conventional, whole-body 3T MRI and on the C3T. Acoustic measurements of DTI with trapezoidal EPI waveforms were then made at peak gradient performance on the C3T (80 mT/m amplitude, 700 T/m/s slew rate) and at derated performance (33 mT/m, 10 to 50 T/m/s) for acoustic noise reduction. DTI was acquired in two different phantoms and in seven human subjects, with and without gradient-derating corresponding to multi- and single-shot acquisitions, respectively. RESULTS: Sinusoidal waveforms on the C3T were quieter by 8.5 to 15.6 A-weighted decibels (dBA) on average as compared to the whole-body MRI. The derated multishot DTI acquisition noise level was only 8.7 dBA (at 13 T/m/s slew rate) above ambient, and was quieter than non-derated, single-shot DTI by 22.3 dBA; however, the scan time was almost quadrupled. Although derating resulted in negligible diffusivity differences in the phantoms, small biases in diffusivity measurements were observed in human subjects (apparent diffusion coefficient = +9.3 ± 8.8%, fractional anisotropy = +3.2 ± 11.2%, radial diffusivity = +9.4 ± 16.8%, parallel diffusivity = +10.3 ± 8.4%). CONCLUSION: The feasibility of achieving reduced acoustic noise levels with whole-brain DTI on the C3T MRI was demonstrated. Magn Reson Med 79:2902-2911, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Imagen de Difusión Tensora , Acústica , Adulto , Anisotropía , Encéfalo/diagnóstico por imagen , Imagen Eco-Planar , Estudios de Factibilidad , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Ruido , Fantasmas de Imagen , Reproducibilidad de los Resultados , Relación Señal-Ruido , Temperatura , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA