Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Opt ; 54(34): 10177-88, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26836675

RESUMEN

Silicon direct bonding offers flexibility in the design and development of Si optics by allowing manufacturers to combine subcomponents with a potentially lossless and mechanically stable interface. The bonding process presents challenges in meeting the requirements for optical performance because air gaps at the Si interface cause large Fresnel reflections. Even small (35 nm) gaps reduce transmission through a direct bonded Si compound optic by 4% at λ=1.25 µm at normal incidence. We describe a bond inspection method that makes use of precision slit spectroscopy to detect and measure gaps as small as 14 nm. Our method compares low-finesse Fabry-Perot models to high-precision measurements of transmission as a function of wavelength. We demonstrate the validity of the approach by measuring bond gaps of known depths produced by microlithography.

2.
Sci Adv ; 9(23): eadf8736, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37285438

RESUMEN

Capturing planets in the act of losing their atmospheres provides rare opportunities to probe their evolution history. This analysis has been enabled by observations of the helium triplet at 10,833 angstrom, but past studies have focused on the narrow time window right around the planet's optical transit. We monitored the hot Jupiter HAT-P-32 b using high-resolution spectroscopy from the Hobby-Eberly Telescope covering the planet's full orbit. We detected helium escaping HAT-P-32 b at a 14σ significance,with extended leading and trailing tails spanning a projected length over 53 times the planet's radius. These tails are among the largest known structures associated with an exoplanet. We interpret our observations using three-dimensional hydrodynamic simulations, which predict Roche Lobe overflow with extended tails along the planet's orbital path.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA