Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Biochem J ; 475(18): 2955-2967, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30120107

RESUMEN

Interferon-gamma (IFN-γ) is a pleiotropic cytokine that exerts important functions in inflammation, infectious diseases, and cancer. The large GTPase human guanylate-binding protein 1 (GBP-1) is among the most strongly IFN-γ-induced cellular proteins. Previously, it has been shown that GBP-1 mediates manifold cellular responses to IFN-γ including the inhibition of proliferation, spreading, migration, and invasion and through this exerts anti-tumorigenic activity. However, the mechanisms of GBP-1 anti-tumorigenic activities remain poorly understood. Here, we elucidated the molecular mechanism of the human GBP-1-mediated suppression of proliferation by demonstrating for the first time a cross-talk between the anti-tumorigenic IFN-γ and Hippo pathways. The α9-helix of GBP-1 was found to be sufficient to inhibit proliferation. Protein-binding and molecular modeling studies revealed that the α9-helix binds to the DNA-binding domain of the Hippo signaling transcription factor TEA domain protein (TEAD) mediated by the 376VDHLFQK382 sequence at the N-terminus of the GBP-1-α9-helix. Mutation of this sequence resulted in abrogation of both TEAD interaction and suppression of proliferation. Further on, the interaction caused inhibition of TEAD transcriptional activity associated with the down-regulation of TEAD-target genes. In agreement with these results, IFN-γ treatment of the cells also impaired TEAD activity, and this effect was abrogated by siRNA-mediated inhibition of GBP-1 expression. Altogether, this demonstrated that the α9-helix is the proliferation inhibitory domain of GBP-1, which acts independent of the GTPase activity through the inhibition of the Hippo transcription factor TEAD in mediating the anti-proliferative cell response to IFN-γ.


Asunto(s)
Proliferación Celular , Proteínas de Unión al GTP/metabolismo , Interferón gamma/metabolismo , Mutación Missense , Factores de Transcripción/metabolismo , Proteínas de Unión al GTP/genética , Células HeLa , Humanos , Interferón gamma/genética , Dominios Proteicos , Estructura Secundaria de Proteína , Factores de Transcripción/genética
2.
FEBS Lett ; 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39300280

RESUMEN

Heart failure (HF) is highly prevalent. Mechanisms underlying HF remain incompletely understood. Splicing factors (SF), which control pre-mRNA alternative splicing, regulate cardiac structure and function. This study investigated regulation of the splicing factor heterogeneous nuclear ribonucleoprotein-L (hnRNPL) in the failing heart. hnRNPL protein increased in left ventricular tissue from mice with transaortic constriction-induced HF and from HF patients. In left ventricular tissue, hnRNPL was detected predominantly in nuclei. Knockdown of the hnRNPL homolog Smooth in Drosophila induced cardiomyopathy. Computational analysis of predicted mouse and human hnRNPL binding sites suggested hnRNPL-mediated alternative splicing of tropomyosin, which was confirmed in C2C12 myoblasts. These findings identify hnRNPL as a sensor of cardiac dysfunction and suggest that disturbances of hnRNPL affect alternative splicing in HF.

3.
bioRxiv ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38903061

RESUMEN

Pathogenic variants in HMGCR were recently linked to a limb-girdle muscular dystrophy (LGMD) phenotype. The protein product HMG CoA reductase (HMGCR) catalyzes a key component of the cholesterol synthesis pathway. The two other muscle diseases associated with HMGCR, statin-associated myopathy (SAM) and autoimmune anti-HMGCR myopathy, are not inherited in a Mendelian pattern. The mechanism linking pathogenic variants in HMGCR with skeletal muscle dysfunction is unclear. We knocked down Hmgcr in mouse skeletal myoblasts, knocked down hmgcr in Drosophila, and expressed three pathogenic HMGCR variants (c.1327C>T, p.Arg443Trp; c.1522_1524delTCT, p.Ser508del; and c.1621G>A, p.Ala541Thr) in Hmgcr knockdown mouse myoblasts. Hmgcr deficiency was associated with decreased proliferation, increased apoptosis, and impaired myotube fusion. Transcriptome sequencing of Hmgcr knockdown versus control myoblasts revealed differential expression involving mitochondrial function, with corresponding differences in cellular oxygen consumption rates. Both ubiquitous and muscle-specific knockdown of hmgcr in Drosophila led to lethality. Overexpression of reference HMGCR cDNA rescued myotube fusion in knockdown cells, whereas overexpression of the pathogenic variants of HMGCR cDNA did not. These results suggest that the three HMGCR-related muscle diseases share disease mechanisms related to skeletal muscle development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA