Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Animals (Basel) ; 12(5)2022 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-35268228

RESUMEN

Visual leopard identifications performed with camera traps using the capture-recapture method only consider areas of the skin that are visible to the equipment. The method presented here considered the spot or rosette formations of either the two flanks or the face, and the captured images were then compared and matched with available photographs. Leopards were classified as new individuals if no matches were found in the existing set of photos. It was previously assumed that an individual leopard's spot or rosette pattern would not change. We established that the spot and rosette patterns change over time and that these changes are the result of injuries in certain cases. When compared to the original patterns, the number of spots may be lost or reduced, and some spots or patterns may change in terms of their prominence, shape, and size. We called these changes "obliterate changes" and "rejig changes", respectively. The implementation of an earlier method resulted in a duplication of leopard counts, achieving an error rate of more than 15% in the population at Yala National Park. The same leopard could be misidentified and counted multiple times, causing overestimated populations. To address this issue, we created a new two-step methodology for identifying Sri Lankan leopards. The multi-point identification method requires the evaluation of at least 9-10 spot areas before a leopard can be identified. Moreover, the minimum leopard population at the YNP 1 comprises at least 77 leopards and has a density of 0.5461 leopards per km2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA