Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Langmuir ; 40(12): 6445-6452, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38483123

RESUMEN

The water wettability of hexagonal boron nitride (hBN) has attracted a lot of research interest in the past 15 years. Experimentally, the static water contact angle (WCA) has been widely utilized to characterize the intrinsic water wettability of hBN. In the current study, we have investigated the effect of airborne hydrocarbons and defects on both static and dynamic WCAs of hBN. Our results showed that the static WCA is impacted by defects, which suggests that previously reported static WCAs do not characterize the intrinsic water wettability of hBN since the state-of-the-art hBN samples always have relatively high defect density. Instead, we found that the advancing WCA of freshly exfoliated hBN is not affected by the defects and airborne hydrocarbons. As a result, the advancing WCA on freshly exfoliated hBN, determined to be 79 ± 3°, best represents the intrinsic water wettability of hBN. A qualitative model has been proposed to describe the effect of airborne hydrocarbons and defects on the static and dynamic WCA of hBN, which is well supported by the experimental results. The finding here has important implications for the water wettability of 2D materials.

2.
Adv Mater ; 36(30): e2403820, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38720475

RESUMEN

Graphene's wetting transparency offers promising avenues for creating multifunctional devices by allowing real-time wettability control on liquid substrates via the flow of different liquids beneath graphene. Despite its potential, direct measurement of floating graphene's wettability remains a challenge, hindering the exploration of these applications. The current study develops an experimental methodology to assess the wetting transparency of single-layer graphene (SLG) on liquid substrates. By employing contact angle measurements and Neumann's Triangle model, the challenge of evaluating the wettability of floating free-suspended single-layer graphene is addressed. The research reveals that for successful contact angle measurements, the testing and substrate liquids must be immiscible. Using diiodomethane as the testing liquid and ammonium persulfate solution as liquid substrate, the study demonstrates the near-complete wetting transparency of graphene. Furthermore, it successfully showcases the feasibility of real-time wettability control using graphene on liquid substrates. This work not only advances the understanding of graphene's interaction with liquid interfaces but also suggests a new avenue for the development of multifunctional materials and devices by exploiting the unique wetting transparency of graphene.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA