Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Development ; 143(20): 3774-3784, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27578794

RESUMEN

Neural progenitors typically divide asymmetrically to renew themselves, while producing daughters with more limited potential. In the Drosophila embryonic ventral nerve cord, neuroblasts initially produce daughters that divide once to generate two neurons/glia (type I proliferation mode). Subsequently, many neuroblasts switch to generating daughters that differentiate directly (type 0). This programmed type I>0 switch is controlled by Notch signaling, triggered at a distinct point of lineage progression in each neuroblast. However, how Notch signaling onset is gated was unclear. We recently identified Sequoia (Seq), a C2H2 zinc-finger transcription factor with homology to Drosophila Tramtrack (Ttk) and the positive regulatory domain (PRDM) family, as important for lineage progression. Here, we find that seq mutants fail to execute the type I>0 daughter proliferation switch and also display increased neuroblast proliferation. Genetic interaction studies reveal that seq interacts with the Notch pathway, and seq furthermore affects expression of a Notch pathway reporter. These findings suggest that seq may act as a context-dependent regulator of Notch signaling, and underscore the growing connection between Seq, Ttk, the PRDM family and Notch signaling.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Animales , Proliferación Celular/genética , Proliferación Celular/fisiología , Proteínas de Unión al ADN/genética , Drosophila , Proteínas de Drosophila/genética , Mutación/genética , Proteínas del Tejido Nervioso/genética , Sistema Nervioso/citología , Sistema Nervioso/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Proteínas Represoras/genética , Factores de Transcripción/genética
2.
PLoS Genet ; 12(4): e1005984, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27070787

RESUMEN

The Notch pathway controls proliferation during development and in adulthood, and is frequently affected in many disorders. However, the genetic sensitivity and multi-layered transcriptional properties of the Notch pathway has made its molecular decoding challenging. Here, we address the complexity of Notch signaling with respect to proliferation, using the developing Drosophila CNS as model. We find that a Notch/Su(H)/E(spl)-HLH cascade specifically controls daughter, but not progenitor proliferation. Additionally, we find that different E(spl)-HLH genes are required in different neuroblast lineages. The Notch/Su(H)/E(spl)-HLH cascade alters daughter proliferation by regulating four key cell cycle factors: Cyclin E, String/Cdc25, E2f and Dacapo (mammalian p21CIP1/p27KIP1/p57Kip2). ChIP and DamID analysis of Su(H) and E(spl)-HLH indicates direct transcriptional regulation of the cell cycle genes, and of the Notch pathway itself. These results point to a multi-level signaling model and may help shed light on the dichotomous proliferative role of Notch signaling in many other systems.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Sistema Nervioso Central/embriología , Proteínas de Drosophila/metabolismo , Drosophila/embriología , Receptores Notch/metabolismo , Proteínas Represoras/metabolismo , Animales , Sitios de Unión/genética , Comunicación Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linaje de la Célula , Proliferación Celular/genética , Ciclina E/metabolismo , Drosophila/genética , Drosophila/metabolismo , Factores de Transcripción E2F/metabolismo , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Nucleares/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Transducción de Señal , Factores de Transcripción , Transcripción Genética/genética , Activación Transcripcional/genética
3.
Dev Cell ; 43(3): 332-348.e4, 2017 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-29112852

RESUMEN

Great progress has been made in identifying transcriptional programs that establish stem cell identity. In contrast, we have limited insight into how these programs are down-graded in a timely manner to halt proliferation and allow for cellular differentiation. Drosophila embryonic neuroblasts undergo such a temporal progression, initially dividing to bud off daughters that divide once (type I), then switching to generating non-dividing daughters (type 0), and finally exiting the cell cycle. We identify six early transcription factors that drive neuroblast and type I daughter proliferation. Early factors are gradually replaced by three late factors, acting to trigger the type I→0 daughter proliferation switch and eventually to stop neuroblasts. Early and late factors regulate each other and four key cell-cycle genes, providing a logical genetic pathway for these transitions. The identification of this extensive driver-stopper temporal program controlling neuroblast lineage progression may have implications for studies in many other systems.


Asunto(s)
Ciclo Celular/fisiología , Linaje de la Célula , Proliferación Celular/fisiología , Drosophila melanogaster/citología , Regulación del Desarrollo de la Expresión Génica/fisiología , Células-Madre Neurales/citología , Animales , Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo
4.
Dev Cell ; 30(2): 192-208, 2014 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-25073156

RESUMEN

During central nervous system (CNS) development, progenitors typically divide asymmetrically, renewing themselves while budding off daughter cells with more limited proliferative potential. Variation in daughter cell proliferation has a profound impact on CNS development and evolution, but the underlying mechanisms remain poorly understood. We find that Drosophila embryonic neural progenitors (neuroblasts) undergo a programmed daughter proliferation mode switch, from generating daughters that divide once (type I) to generating neurons directly (type 0). This typeI>0 switch is triggered by activation of Dacapo (mammalian p21(CIP1)/p27(KIP1)/p57(Kip2)) expression in neuroblasts. In the thoracic region, Dacapo expression is activated by the temporal cascade (castor) and the Hox gene Antennapedia. In addition, castor, Antennapedia, and the late temporal gene grainyhead act combinatorially to control the precise timing of neuroblast cell-cycle exit by repressing Cyclin E and E2f. This reveals a logical principle underlying progenitor and daughter cell proliferation control in the Drosophila CNS.


Asunto(s)
Linaje de la Célula , Proliferación Celular , Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células-Madre Neurales/citología , Animales , Proteína con Homeodominio Antennapedia/genética , Proteína con Homeodominio Antennapedia/metabolismo , Ciclina E/genética , Ciclina E/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Drosophila/embriología , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Factores de Transcripción E2F/genética , Factores de Transcripción E2F/metabolismo , Genes de Cambio , Células-Madre Neurales/metabolismo , Células-Madre Neurales/fisiología , Neurogénesis , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA