Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Sci Food Agric ; 2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38521988

RESUMEN

BACKGROUND: The biological functions of ferulic acid (FA) have garnered significant interest but its limited solubility and stability have led to low bioavailability. Hydroxypropyl-ß-cyclodextrin (HP-ß-CD), with its distinctive hollow structure, offers the potential for encapsulating hydrophobic molecules. The formation of an inclusion complex between FA and HP-ß-CD may therefore be a viable approach to address the inherent limitations of FA. To investigate the underlying mechanism of the FA/HP-ß-CD inclusion complex formation, a combination of spectral analyses and computer simulation was employed. RESULTS: The disappearance of the characteristic peaks of FA in Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) confirmed the formation of an inclusion complex between FA and HP-ß-CD. Thermogravimetry-derivative thermogravimetry (TG-DTG) studies demonstrated that the thermal stability of FA was enhanced due to the encapsulation of FA within HP-ß-CD. Molecular dynamics simulation also provided evidence that FA successfully penetrated the HP-ß-CD cavity, primarily driven by van der Waals interactions. The formation of the complex resulted in more compact HP-ß-CD structures. The bioavailability of FA was also strengthened through the formation of inclusion complexes with HP-ß-CD. CONCLUSIONS: The findings of this study have contributed to a deeper understanding of the interactions between FA and HP-ß-CD, potentially advancing a delivery system for FA and enhancing the bioavailability of insoluble active components. © 2024 Society of Chemical Industry.

2.
Environ Res ; 219: 115074, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36528047

RESUMEN

Silver nanoparticles (AgNPs) has been widely detected in the substrates of constructed wetlands (CWs), posing threaten to pollutants removal efficiency of CWs. However, the way to alleviate the toxicity of AgNPs on CWs is unclear. In this study, the gravel (GR), biochar (BC), pyrite (PY) and pyrite coupled with biochar matrix (PYBC) were selected as substrates to restore the pollutants removal efficiency of CWs under the exposure to the environment (0.2 mg/L) and accumulation (10 mg/L) concentration of AgNPs. Results showed that the BC and PY showed limited mitigation effects, while the PYBC alleviated the toxicity significantly. Especially in the exposure to the accumulation concentration of AgNPs, the removal of NH4+-N, TN, COD and TP in the PYBC were 10.2%, 8.3%, 9.4% and 10.7% higher than that in the GR, respectively. Mechanism analysis verified that AgNPs were transformed into Ag-Fe-S core shell aggregates (size >200 nm) decreasing bioavailability and the damage to cytomembrane. The PYBC restored the nitrogen removal efficiency by increasing the abundance of Nitrospira and Geothrix, which these bacteria were defined as nitrifiers and Feammox bacteria. This study provides a promising strategy to mitigate AgNPs' toxicity on the pollutant removal efficiency in CWs.


Asunto(s)
Nanopartículas del Metal , Humedales , Eliminación de Residuos Líquidos/métodos , Aguas Residuales , Nanopartículas del Metal/toxicidad , Plata/toxicidad , Nitrógeno/análisis , Bacterias
3.
Biochemistry ; 59(24): 2249-2258, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32469202

RESUMEN

Aggregation and the formation of oligomeric intermediates of amyloid-ß (Aß) at the membrane interface of neuronal cells are implicated in the cellular toxicity and pathology of Alzheimer's disease. Small molecule compounds have been shown to suppress amyloid aggregation and cellular toxicity, but often the presence of a lipid membrane negates their activity. A high-throughput screen of 1800 small molecules was performed to search for membrane active inhibitors, and 21 primary hits were discovered. Through the use of fluorescence-based assays, transmission electron microscopy, and dot blot assays, the initial 21 primary hits were narrowed down to five lead compounds. Nuclear magnetic resonance and circular dichroism experiments were used for further confirmation of amyloid inhibition at the membrane interface and to obtain insights into the secondary structure of amyloid-ß, while size exclusion chromatography was used to characterize the size of Aß species. Lastly, dye-leakage assays allowed us to understand how the addition of the five lead compounds affected amyloid-ß's ability to permeate the lipid bilayer. These results provide insights into small molecules that stabilize small amyloid species in the presence of membranes for the development of tool compounds for deeper investigations of these transient species.


Asunto(s)
Péptidos beta-Amiloides/química , Membrana Dobles de Lípidos/química , Dicroismo Circular , Humanos , Resonancia Magnética Nuclear Biomolecular
4.
J Am Chem Soc ; 142(27): 11669-11673, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32543864

RESUMEN

We use liquid-phase transmission electron microscopy (TEM) to study self-assembly dynamics of charged gold nanoarrows (GNAs), which reveal an unexpected "colloid-atom duality". On one hand, they assemble following the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory for colloids when van der Waals attraction overruns slightly screened electrostatic repulsion. Due to concaveness in shape, GNAs adopt zipper motifs with lateral offset in their assembly matching with our modeling of inter-GNA interaction, which form into unconventional structures resembling degenerate crystals. On the other hand, further screening of electrostatic repulsion leads to merging of clusters assembled from GNAs, reminiscent of the coalescence growth mode in atomic crystals driven by minimization of surface energy, as we measure from the surface fluctuation of clusters. Liquid-phase TEM captures the initial formation of highly curved necks bridging the two clusters. Analysis of the real-time evolution of neck width illustrates the first-time observation of coalescence in colloidal assemblies facilitated by rapid surface diffusion of GNAs. We attribute the duality to the confluence of factors (e.g., nanoscale colloidal interaction, diffusional dynamics) that we access by liquid-phase TEM, taking turns to dominate at different conditions, which is potentially generic to the nanoscale. The atom aspect, in particular, can inspire utilization of atomic crystal synthesis strategies to encode structure and dynamics in nanoscale assembly.

5.
Environ Sci Technol ; 54(21): 14007-14016, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33092338

RESUMEN

Nanosized plastics (nanoplastics) releasing into the wastewater may pose a potential threat to biological nitrogen removal. Constructed wetland (CW), a wastewater treatment or shore buffer system, is an important sink of nanoplastics, while it is unclear how nitrogen removal in CWs occurs in response to nanoplastics. Here, we investigated the effects of polystyrene (PS) nanoplastics (0, 10, and 1000 µg/L) on nitrogen removal for 180 days in CWs. The results revealed that total nitrogen removal efficiency decreased by 29.5-40.6%. We found that PS penetrated the cell membrane and destroyed both membrane integrity and reactive oxygen species balance. Furthermore, PS inhibited microbial activity in vivo, including enzyme (ammonia monooxygenase, nitrate reductase, and nitrite reductase) activities and electron transport system activity (ETSA). These adverse effects, accompanied by a decline in the relative abundance of nitrifiers (e.g., Nitrosomonas and Nitrospira) and denitrifiers (e.g., Thauera and Zoogloea), directly accounted for the strong deterioration observed in nitrogen removal. The decline in leaf and root activities decreased nitrogen uptake by plants, which is an important factor of deterioration in nitrogen removal. Overall, our results imply that the presence of nanoplastics in the aquatic environment is a hidden danger to the global nitrogen cycle and should receive more attention.


Asunto(s)
Nitrógeno , Humedales , Desnitrificación , Microplásticos , Nitrógeno/análisis , Eliminación de Residuos Líquidos , Aguas Residuales
6.
J Dairy Sci ; 103(1): 106-116, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31629514

RESUMEN

Camel milk has significant economic value and is an important food in the region of Alxa Left Banner of Inner Mongolia. Fifteen fresh camel milk samples were collected from domesticated camels in a pasture of Alxa Left Banner. The physicochemical properties and bacterial diversity of camel milk samples were analyzed. The average values of fat, total protein, nonfat milk solids, acidity, and density were 4.40%, 3.87%, 9.50%, 16.95°T, and 1.02 g/cm3, respectively. The bacterial microbiota of the collected fresh camel milk was investigated using PacBio single-molecule real-time (Pacific Biosciences, Menlo Park, CA) sequencing. The camel milk microbiota was highly diverse and comprised 8,513 operational taxonomic units belonging to 32 phyla, 377 genera, and 652 species. The major phyla included Proteobacteria, Firmicutes, Deinococcus-Thermus, Bacteroidetes, and Actinobacteria. A small number of lactic acid bacteria sequences were detected, representing the species Streptococcus thermophilus, Lactobacillus helveticus, Lactococcus lactis, and Leuconostoc mesenteroides. A total of 72 strains of lactic acid bacteria were isolated and identified from 15 samples, including Lactobacillus paracasei, Enterococcus italicus, Enterococcus durans, Lactococcus lactis ssp. lactis, Weissella confusa, and Enterococcus faecium. These results confirm that fresh camel milk has a high bacterial diversity and is a valuable natural resource for isolation of novel lactic acid bacteria.


Asunto(s)
Bacterias/clasificación , Camelus , Microbiología de Alimentos , Leche/química , Leche/microbiología , Animales , China , Lactobacillales/genética , Microbiota , Reacción en Cadena de la Polimerasa
7.
J Dairy Sci ; 103(5): 3937-3949, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32171514

RESUMEN

Morbidity and mortality as a result of liver disease are major problems around the world, especially from alcoholic liver disease (ALD), which is characterized by hepatic inflammation and intestinal microbial imbalance. In this study, we investigated the hepatoprotective effects of camel milk (CM) in a mouse model of acute ALD and the underlying mechanism at the gut microbiota and transcriptome level. Male Institute of Cancer Research mice (n = 24; Beijing Weitong Lihua Experimental Animal Technology Co. Ltd., China) were divided into 3 groups: normal diet (NC); normal diet, then ethanol (ET); and normal diet and camel milk (CM), then ethanol (ET+CM). Analysis of serum biochemical indexes and histology revealed a reduction in hepatic inflammation in the ET+CM group. Sequencing of 16S rRNA showed that CM modulated the microbial communities, with an increased proportion of Lactobacillus and reduced Bacteroides, Alistipes, and Rikenellaceae RC9 gut group. Comparative hepatic transcriptome analysis revealed 315 differentially expressed genes (DEG) in the ET+CM and ET groups (150 upregulated and 165 downregulated). Enrichment analysis revealed that CM downregulated the expression of inflammation-related (ILB and CXCL1) genes in the IL-17 and tumor necrosis factor (TNF-α) pathways. We conclude that CM modulates liver inflammation and alleviates the intestinal microbial disorder caused by acute alcohol injury, indicating the potential of dietary CM in protection against alcohol-induced liver injury.


Asunto(s)
Camelus , Etanol/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Hepatopatías Alcohólicas/metabolismo , Hepatopatías Alcohólicas/microbiología , Leche/fisiología , Transcriptoma , Animales , Modelos Animales de Enfermedad , Inflamación/metabolismo , Lactobacillus/genética , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microbiota , ARN Ribosómico 16S , Factor de Necrosis Tumoral alfa/metabolismo
8.
Curr Microbiol ; 76(7): 810-817, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31030270

RESUMEN

The complex gut microbiota plays a key role in host metabolism and health. However, the core microbial communities in the different aged Bactrian camels remain totally unclear. We used high-throughput 16S rRNA gene sequencing to examine the temporal variability of the fecal microbiota in Bactrian camels. At 2 months of age, the fecal microbiota was composed of Firmicutes, Proteobacteria, and Actinobacteria. At 1 and 3 years of age, the fecal microbiota was dominated by Firmicutes, Bacteroidetes, and Verrucomicrobia. At the genus level, Blautia, Fusobacterium, and Bifidobacterium were more abundant at 2 months of age, as well as Escherichia-Shigella. Ruminococcaceae_UCG-005, Akkermansia, and Christensenellaceae_R-7_group were the most abundant at 1 and 3 years of age. Diversity and stability of the gut microbiota increased with age. There was enrichment for genes associated with immune system diseases at 2 months of age. This study is the first to investigate the distribution of the gut microbiota in Bactrian camels with different ages and provide a baseline for future camel microbiology research.


Asunto(s)
Bacterias/genética , Biodiversidad , Camelus/microbiología , Microbioma Gastrointestinal , Secuenciación de Nucleótidos de Alto Rendimiento , Factores de Edad , Animales , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/metabolismo , China , ADN Bacteriano/genética , Heces/microbiología , Microbioma Gastrointestinal/genética , Genoma Bacteriano/genética , Anotación de Secuencia Molecular , ARN Ribosómico 16S/metabolismo , Análisis de Secuencia de ADN
9.
Sensors (Basel) ; 19(24)2019 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-31817195

RESUMEN

To solve the problem of passive sensor data association in multi-sensor multi-target tracking, a novel linear-time direct data assignment (DDA) algorithm is proposed in this paper. Different from existing methods which solve the data association problem in the measurement domain, the proposed algorithm solves the problem directly in the target state domain. The number and state of candidate targets are preset in the region of interest, which can avoid the problem of combinational explosion. The time complexity of the proposed algorithm is linear with the number of sensors and targets while that of the existing algorithms are exponential. Computer simulations show that the proposed algorithm can achieve almost the same association accuracy as the existing algorithms, but the time consumption can be significantly reduced.

10.
Materials (Basel) ; 17(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38893745

RESUMEN

Precast ultra-high-performance concrete (UHPC) has emerged as indispensable in the engineering sector due to its cost-effectiveness and superior performance. Currently, precast UHPC grapples with challenges pertaining to slow setting times and insufficient early strength, largely attributed to its high water-reducing agent content. Effective utilization of early strength agents to augment UHPC's early strength is pivotal in addressing this issue. This study investigates the efficacy of two distinct concrete early strength agents, namely calcium formate (Ca(HCO2)2) and aluminum sulfate (Al2(SO4)3). A UHPC system with a water/cement ratio of 0.17 was used; both single and compound doping experiments were conducted using varied dosages of the aforementioned early strength agents. Our results show that both early strength agents significantly reduce setting time and enhance early strength at appropriate dosages. Specifically, the addition of 0.3% Ca(HCO2)2 led to a 33.07% decrease in setting time for UHPC. Moreover, the incorporation of 0.3% Ca(HCO2)2 and 0.5% Al2(SO4)3 resulted in a strength of 81.9 MPa at 1.5 days, representing a remarkable increase of 118.4%. It is noteworthy that excessive use of Ca(HCO2)2 inhibits the hydration process, whereas an abundance of Al2(SO4)3 diminishes the early strength effect. Simultaneously, this article provides recommendations regarding the dosage of two distinct early strength agents, offering a novel solution for expediting the production of prefabricated UHPC with a low water/cement ratio and high water-reducing agent content.

11.
Nutr Diabetes ; 14(1): 23, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653987

RESUMEN

BACKGROUND: The number of patients with type 1 diabetes rises rapidly around the world in recent years. Maternal diabetes has a detrimental effect on reproductive outcomes due to decreased oocyte quality. However, the strategies to improve the oocyte quality and artificial reproductive technology (ART) efficiency of infertile females suffering from diabetes have not been fully studied. In this study, we aimed to examine the effects of nicotinamide mononucleotide (NMN) on oocyte maturation of mouse with type 1 diabetes mouse and explore the underlying mechanisms of NMN's effect. METHODS: Streptozotocin (STZ) was used to establish the mouse models with type 1 diabetes. The successful establishment of the models was confirmed by the results of body weight test, fasting blood glucose test and haematoxylin and eosin (H&E) staining. The in vitro maturation (IVM) rate of oocytes from diabetic mice was examined. Immunofluorescence staining (IF) was performed to examine the reactive oxygen species (ROS) level, spindle/chromosome structure, mitochondrial function, actin dynamics, DNA damage and histone modification of oocytes, which are potential factors affecting the oocyte quality. The quantitative reverse transcription PCR (RT-qPCR) was used to detect the mRNA levels of Sod1, Opa1, Mfn2, Drp1, Sirt1 and Sirt3 in oocytes. RESULTS: The NMN supplementation increased the oocyte maturation rate of the mice with diabetes. Furthermore, NMN supplementation improved the oocyte quality by rescuing the actin dynamics, reversing meiotic defects, improving the mitochondrial function, reducing ROS level, suppressing DNA damage and restoring changes in histone modifications of oocytes collected from the mice with diabetes. CONCLUSION: NMN could improve the maturation rate and quality of oocytes in STZ-induced diabetic mice, which provides a significant clue for the treatment of infertility of the patients with diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Dinaminas , Mononucleótido de Nicotinamida , Oocitos , Especies Reactivas de Oxígeno , Animales , Ratones , Femenino , Oocitos/efectos de los fármacos , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Mononucleótido de Nicotinamida/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Sirtuina 1/metabolismo , Sirtuina 3/metabolismo , Técnicas de Maduración In Vitro de los Oocitos/métodos , Superóxido Dismutasa-1 , Daño del ADN/efectos de los fármacos , Estreptozocina , Oogénesis/efectos de los fármacos
12.
Animals (Basel) ; 14(4)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38396579

RESUMEN

Poor tenderness of camel meat has seriously hampered the development of the camel meat industry. This study investigated the effects of muscle fiber composition and ageing time on meat quality, glycolytic potential, and glycolysis-related enzyme activities. Muscle samples of the longissimus thoracis (LT), psoas major (PM), and semitendinosus (ST) were collected from eight 8-10 year old Sonid Bactrian camels (females). Muscle fiber composition was examined by ATPase staining and immunohistochemistry. Meat quality indexes, glycolytic potential, and activities of major glycolytic enzymes were examined at 4 °C aging for 1, 6, 24, 72, and 120 h. The results showed that LT was mainly composed of type IIb muscle fibers, whereas PM and ST were mainly composed of type I muscle fibers. The PCR results of the myosin heavy chain (MyHC) were consistent with the ATPase staining results. During aging, the shear force of LT muscle was always greater than that of PM and ST, and its glycolysis was the strongest; type IIa, IIb, and IIx muscle fibers were positively correlated with muscle shear force and glycolysis rate, and type I muscle fibers were significantly and negatively correlated with the activities of the key enzymes of glycolysis within 6 h. The results showed that the muscle fibers of LT muscle had the greatest glycolysis capacity. These results suggest that an excessive type IIb muscle fiber number percentage and area in camel meat accelerated the glycolysis process, but seriously affected the sensory profile of the camel meat. The results of this study provide directions for the camel industry when addressing the poor tenderness of camel meat.

13.
Bioresour Technol ; 402: 130794, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703966

RESUMEN

Carbon deficits in inflow frequently lead to inefficient nitrogen removal in constructed wetlands (CWs) treating tailwater. Solid carbon sources, commonly employed to enhance denitrification in CWs, increase carbon emissions. In this study, MnO2 was incorporated into polycaprolactone substrates within CWs, significantly enhancing NH4+-N and NO3--N removal efficiencies by 48.26-59.78 % and 96.84-137.23 %, respectively. These improvements were attributed to enriched nitrogen-removal-related enzymes and increased plant absorption. Under high nitrogen loads (9.55 ± 0.34 g/m3/d), emissions of greenhouse gases (CO2, CH4, and N2O) decreased by 147.23-202.51 %, 14.53-86.76 %, and 63.36-87.36 %, respectively. N2O emissions were reduced through bolstered microbial nitrogen removal pathways by polycaprolactone and MnO2. CH4 accumulation was mitigated by the increased methanotrophs and dampened methanogenesis, modulated by manganese. Additionally, manganese-induced increases in photosynthetic pigment contents (21.28-64.65 %) fostered CO2 sequestration through plant photosynthesis. This research provides innovative perspectives on enhancing nitrogen removal and reducing greenhouse gas emissions in constructed wetlands with polymeric substrates.


Asunto(s)
Carbono , Metano , Nitrógeno , Humedales , Nitrógeno/metabolismo , Carbono/metabolismo , Metano/metabolismo , Poliésteres/metabolismo , Poliésteres/química , Manganeso/farmacología , Plantas/metabolismo , Desnitrificación , Óxido Nitroso/metabolismo , Dióxido de Carbono/metabolismo , Biodegradación Ambiental , Fotosíntesis
14.
MedComm (2020) ; 4(4): e331, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37547174

RESUMEN

After fertilization, sperm and oocyte fused and gave rise to a zygote which is the beginning of a new life. Then the embryonic development is monitored and regulated precisely from the transition of oocyte to the embryo at the early stage of embryogenesis, and this process is termed maternal-to-zygotic transition (MZT). MZT involves two major events that are maternal components degradation and zygotic genome activation. The epigenetic reprogramming plays crucial roles in regulating the process of MZT and supervising the normal development of early development of embryos. In recent years, benefited from the rapid development of low-input epigenome profiling technologies, new epigenetic modifications are found to be reprogrammed dramatically and may play different roles during MZT whose dysregulation will cause an abnormal development of embryos even abortion at various stages. In this review, we summarized and discussed the important novel findings on epigenetic reprogramming and the underlying molecular mechanisms regulating MZT in mammalian embryos. Our work provided comprehensive and detailed references for the in deep understanding of epigenetic regulatory network in this key biological process and also shed light on the critical roles for epigenetic reprogramming on embryonic failure during artificial reproductive technology and nature fertilization.

15.
Materials (Basel) ; 16(24)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38138665

RESUMEN

Cement-stabilized macadam (CEM-SM) base layers on highways are prone to early shrinkage cracking in extremely cold and arid regions, mainly caused by the large drying shrinkage of traditional cement-stabilized base materials. A multi-component solid waste cementitious material (SWCM) was designed based on the response surface method. The synergistic reaction mechanism of SWCM was analyzed using X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TG). A shrinkage testing system was developed to evaluate the anti-cracking characteristics of stable macadam using multiple solid waste cementitious materials (SWCM-SM), and the strength growth law and frost resistance were analyzed. The results show that the Box-Behnken response surface model was used to obtain the optimal parameter combination for SWCM, including 60% slag, 30% steel slag, and 10% desulfurization gypsum. The compressive strength and flexural strength of SWCM-SM were 24.1% and 26.7% higher than those of CEM-SM after curing 180 days. The frost resistance of SWCM-SM was basically equivalent to that of CEM-SM, and the dry shrinkage strain of SWCM-SM was reduced by 30.7% compared to CEM-SM. It can be concluded that steel slag and desulfurization gypsum stimulate the hydration reaction of slag, thereby improving the bonding strength. Compared to CEM-SM, SWCM-SM exhibits slower hydration reaction and longer hydration duration, exhibiting characteristics of low early strength and high later strength. The early microstrain of the semi-rigid base layer is mainly caused by the occurrence of early water loss shrinkage, and the water loss rate of SWCM-SM is lower than that of CEM-SM. This study concludes that SWCM has good early crack resistance performance for stabilized crushed stones.

16.
Biomed Pharmacother ; 165: 115256, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37536038

RESUMEN

Preclinical trials play critical roles in assessing the safety and efficiency of novel therapeutic strategies for human diseases including live cancer. However, most therapeutic strategies that were proved to be effective in preclinical cancer models failed in human clinical trials due to the lack of appropriate disease animal models. Therefore, it is of importance and urgent to develop a precise animal model for preclinical cancer research. Liver cancer is one of the most frequently diagnosed cancers with low 5-year survival rate. Recently, porcine attracted increasing attentions as animal model in biomedical research. Porcine liver cancer model may provide a promising platform for biomedical research due to their similarities to human being in body size, anatomical characteristics, physiology and pathophysiology. In this review, we comprehensively summarized and discussed the advantages and disadvantages, rationale, current status and progress of pig models for liver cancer research.


Asunto(s)
Investigación Biomédica , Neoplasias Hepáticas , Porcinos , Animales , Humanos , Modelos Animales de Enfermedad
17.
Environ Technol ; : 1-14, 2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37675519

RESUMEN

Herein, three g-C3N4(MCN/TCN/UCN), obtained by the direct pyrolysis of melamine/urea/thiourea respectively, were introduced as supports to optimize the NH3-SCR activity of Ce-W-Ti catalyst. Compared to CWT-400-Air, CWT@g-C3N4(2)-300-N2 exhibits lower crystalline anatase TiO2 and larger specific surface area, which improves the dispersion of Ce/W/Ti species on catalysts surface. Furthermore, the introduction of g-C3N4 as supports also contributes to doping C/N elements into Ce-W-Ti catalyst and increases the Ce3+/(Ce3++Ce4+) and Oα/(Oα+Oß) molar ratios on catalyst surface. These all are advantageous to the NH3-SCR activity. However, UCN shows better promotional effect than MCN and TCN. This might be mainly attributed to the loose and porous stacked layered fold structure of UCN, the larger BET surface area, higher dispersion of Ce/W/Ti species and moderate weak/medium-strong acid sites of CWT@UCN(2)-300-N2. At the same time, the influence of carbon nitride amount, calcination atmosphere and calcination temperature on the NH3-SCR activity of CWT@g-C3N4 catalyst were also investigated.

18.
Poult Sci ; 102(11): 103029, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37713803

RESUMEN

Goose astroviruses (GoAstVs) are causative agents that account for fatal infection of goslings characterized by visceral urate deposition, resulting in severe economic losses in major goose-producing regions in China since 2017. In this study, we sought to unravel the intrinsic properties associated with adaptation and evolution in the host environment of GoAstVs. Consistent results from phylogenetic analysis and correspondence analysis performed on the codon usage patterns (CUPs) reveal 2 clusters of GoAstVs, namely, GoAstV-1 and GoAstV-2. However, multiple similar compositional characteristics were found, despite the high divergence between GoAstV-1 and GoAstV-2. Studies on the base composition of GoAstVs reveal an A/U bias, indicating a compositional constraint, while natural selection prevailed in determining the CUPs in the virus genome based on our neutrality plot analysis, reflecting high adaptive pressure to fit the host environment. Codon adaptation index (CAI) analysis revealed a higher degree of fitness to the CUPs of the corresponding host for GoAstVs than avian influenza virus and betacoronaviruses, which may be a favorable factor contributing to the high pathogenicity and wide distribution of GoAstVs in goslings. In addition, GoAstVs were less adapted to ducks and chickens, with significantly lower CAI values than to geese, which may be a reason for the different prevalence of GoAstVs among these species. Extensive investigations on dinucleotide distribution revealed a significant suppression of the CpG and UpA motifs in the virus genome, which may facilitate adaptation to the host's innate immune system by evading surveillance. In addition, our study reported the trends of increasing fitness to the host's microenvironment for GoAstVs through increasing adaptation to host CUPs and ongoing reduction of CpG motifs in the virus genome. The present analysis deepens our understanding of the basic biology, pathogenesis, adaptation and evolutionary pattern of GoAstVs, and contributes to the development of novel antiviral strategies.


Asunto(s)
Avastrovirus , Gansos , Animales , Gansos/genética , Composición de Base , Filogenia , Pollos/genética , Codón , Avastrovirus/genética
19.
Front Immunol ; 14: 1227797, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37465684

RESUMEN

Currently, anti-PD-1/PD-L1 immunotherapy using immune checkpoint inhibitors is widely used in the treatment of multiple cancer types including lung cancer, which is a leading cause of cancer death in the world. However, only a limited proportion of lung cancer patients will benefit from anti-PD-1/PD-L1 therapy. Therefore, it is of importance to predict the response to immunotherapy for the precision treatment of patients. Although the expression of PD-L1 and tumor mutation burden (TMB) are commonly used to predict the clinical response of anti-PD-1/PD-L1 therapy, other factors such as tumor-specific genes, dMMR/MSI, and gut microbiome are also promising predictors for immunotherapy in lung cancer. Furthermore, invasive peripheral blood biomarkers including blood DNA-related biomarkers (e.g., ctDNA and bTMB), blood cell-related biomarkers (e.g., immune cells and TCR), and other blood-related biomarkers (e.g., soluble PD-L1 and cytokines) were utilized to predict the immunotherapeutic response. In this review, the current achievements of anti-PD-1/PD-L1 therapy and the potential biomarkers for the prediction of anti-PD-1/PD-L1 immunotherapy in lung cancer treatment were summarized and discussed.


Asunto(s)
Antígeno B7-H1 , Neoplasias Pulmonares , Humanos , Antígeno B7-H1/metabolismo , Mutación , Neoplasias Pulmonares/tratamiento farmacológico , Biomarcadores de Tumor/genética , Inmunoterapia
20.
J Hazard Mater ; 443(Pt B): 130310, 2023 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-36370481

RESUMEN

Riparian sediment is the last barrier preventing contaminants from polluting aquatic ecosystems. Recently, microplastics (MPs) have frequently been found in sediments. However, the MP aging process and its impact on sediments remain unknown. This study aimed to identify the key driving factors and mechanisms of riparian sediment on MPs aging behavior. The results showed that MPs surface suffered heavy breakage and the oxygen-to-carbon ratio of MPs increased by 268 % after accumulation in sediment for 214 d. The carbonyl index revealed that the degree of MP aging driven by dissolved organic matter (DOM) was 6.7-83.6 % greater than that of colloids, indicating that DOM was the key sediment fraction driving MP aging. Sunlight was an important environmental factor that enhanced MPs aging by sediment fractions, because photo-irradiated DOM produced hydroxyl and superoxide radicals to damage the MPs structure. Benzoic acid, dibenzoylmethane, and 4-heptyl-4,6-diphenyl-tetrahydro-pytan-2-one were the main products during the MP aging process under the interaction of sunlight and DOM, which showed acute toxicity to aquatic organisms and caused more severe toxicity during the chronic period. These results clearly clarify the behavior and environmental risk of MPs after accumulation in sediment, providing guide information to control MP pollution in the riparian zone.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Microplásticos/toxicidad , Plásticos/química , Materia Orgánica Disuelta , Ecosistema , Contaminantes Químicos del Agua/química , Coloides
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA