Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Fluoresc ; 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38386248

RESUMEN

Cu2+ was deemed as toxic and the most common heavy metal pollution in the water and food. Meanwhile, endogenous Cu2+ was deeply involved in plenty of physiological and pathological processes of human. Cu2+ imbalance was related to multiple diseases. Here we developed a Cu2+-responsive NIR probe HX, which not only demonstrated obvious color change when subjected to Cu2+, but also showed linear-dependent NIR fluorescence emission to Cu2+ concentration for Cu2+ detection and quantification both in vitro and in vivo. When HX was applied to imaging Cu2+ in the cell or living animals, intracellular Cu2+ fluctuation and Cu2+ accumulation in the liver could be visualized to indicate the copper level in the cell or organs with low background signals. Meanwhile, by applying HX to monitor Cu2+ uptake in the tumor, copper transporter function could be evaluated to screen the patient who are sensitivity to platinum drug.

2.
Biotechnol Lett ; 43(1): 99-103, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33064228

RESUMEN

OBJECTIVES: A redox potential-driven fermentation, maintaining dissolved oxygen at a prescribed level while simultaneously monitoring the changes of fermentation redox potential, was developed to guide the cultivation progress of recombinant protein expression. RESULTS: A recombinant E. coli harboring prolinase-expressing plasmid (pKK-PepR2) was cultivated using the developed process. Two distinct ORP valleys were noticeable based on recorded profile. The first ORP valley is equivalent to the timing for the addition of inducing agent, and the second ORP valley serves to guide the timing for cell harvesting. The final prolinase activity is 0.172 µmol/mg/min as compared to that of 0.154 µmol/mg/min where the optical density was employed to guide the timing of inducer addition and an empirically determined length of the cultivation. CONCLUSION: The developed process can be further modified to become an automatic operation.


Asunto(s)
Biotecnología/métodos , Fermentación/genética , Oxidación-Reducción , Proteínas Recombinantes , Escherichia coli/genética , Escherichia coli/metabolismo , Plásmidos/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
3.
Ecotoxicol Environ Saf ; 188: 109858, 2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-31706236

RESUMEN

Cultivar-dependent cadmium (Cd) accumulation was principal in developing Cd-pollution safe cultivars (PSCs). Proteins related to different Cd accumulations of the low-Cd-accumulating (SJ19) and high-Cd-accumulating (CX4) cultivars were investigated by iTRAQ analysis. Higher Cd bioaccumulation factors and translocation factor in CX4 than in SJ19 were consistent with the cultivar-dependent Cd accumulations. The Cd uptake was promoted in CX4 due to its higher expression of Cd-binding proteins and the lower expression of Cd-efflux proteins in roots. What's more, significantly elevated thiol groups (PC2 and PC3) in CX4 under Cd stress might contribute to the high Cd accumulation in roots and the root-to-shoot translocation of Cd-PC complex. Up-regulated proteins involved in cellulose biosynthesis and pectin de-esterification in SJ19 enhanced the Cd sequestration of root cell walls, which was considered as the predominant strategy for reducing Cd accumulation in shoots. The present study provided novel insights in the cultivar-dependent Cd accumulation in shoots of B. parachinensis.


Asunto(s)
Brassica/metabolismo , Cadmio/metabolismo , Proteínas de Plantas/metabolismo , Contaminantes del Suelo/metabolismo , Transporte Biológico , Brassica/genética , Celulosa/metabolismo , Pectinas/metabolismo , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Proteómica , Reactivos de Sulfhidrilo/metabolismo
4.
Environ Sci Technol ; 50(12): 6485-94, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27228483

RESUMEN

To reduce cadmium (Cd) pollution of food chains, screening and breeding of low-Cd-accumulating cultivars are the focus of much study. Two previously identified genotypes, a low-Cd-accumulating genotype (LAJK) and a high-Cd-accumulating genotype (HAJS) of pakchoi (Brassica chinesis L.), were stressed by Cd (12.5 µM) for 0 h (T0), 3 h (T3) and 24 h (T24). By comparative transcriptome analysis for root tissue, 3005 and 4343 differentially expressed genes (DEGs) were identified in LAJK at T3 (vs T0) and T24 (vs T3), respectively, whereas 8677 and 5081 DEGs were detected in HAJS. Gene expression pattern analysis suggested a delay of Cd responded transcriptional changes in LAJK compared to HAJS. DEG functional enrichments proposed genotype-specific biological processes coped with Cd stress. Cell wall biosynthesis and glutathione (GSH) metabolism were found to involve in Cd resistance in HAJS, whereas DNA repair and abscisic acid (ABA) signal transduction pathways played important roles in LAJK. Furthermore, the genes participating in Cd efflux such as PDR8 were overexpressed in LAJK, whereas those responsible for Cd transport such as YSL1 were more enhanced in HAJS, exhibiting different Cd transport processes between two genotypes. These novel findings should be useful for molecular assisted screening and breeding of low-Cd-accumulating genotypes for pakchoi.


Asunto(s)
Brassica/metabolismo , Cadmio/metabolismo , Perfilación de la Expresión Génica , Genotipo , Transcriptoma
5.
J Hazard Mater ; 471: 134439, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38677123

RESUMEN

Microcystins (MCs) have a significant influence on aquatic ecosystems, but little is known about their terrestrial fate and impact. Here, we investigated the fate of two MCs (MC-LR and MC-RR) in the soil-earthworm system, with consideration of their congener-specific impact on earthworm health, soil bacteria, and soil metabolome. Although MCs had little acute lethal effect on earthworms, they caused obvious growth inhibition and setae rupture. Relative to MC-RR, MC-LR exhibited higher bioaccumulation and the resulting dermal lesions and deformation of longitudinal muscles. While the incorporation of both MCs into soils stimulated pathogenic bacteria and depressed oxidative stress tolerant bacteria, the response among soil nitrification and glutathione metabolism differed between the two congeners. The dissipation kinetics of MCs obeyed the first-order model. Earthworms stimulated soil N-cycling enzyme activities, increased the abundance of MC-degrading bacteria, and promoted bacterial metabolic functions related to glutathione metabolism, xenobiotics biodegradation, and metabolism of amino acids that comprise MCs, which accelerated the dissipation of MC-LR and MC-RR by 227% and 82%, respectively. These results provide evidence of significant congener differences in the terrestrial fate and impact of MCs, which will enable a better understanding of their role in mediating soil functions and ecosystem services.


Asunto(s)
Microcistinas , Oligoquetos , Microbiología del Suelo , Contaminantes del Suelo , Animales , Oligoquetos/metabolismo , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/toxicidad , Microcistinas/metabolismo , Microcistinas/toxicidad , Suelo/química , Glutatión/metabolismo , Biodegradación Ambiental , Bacterias/metabolismo , Bioacumulación
6.
J Laparoendosc Adv Surg Tech A ; 33(1): 95-100, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36161880

RESUMEN

Background: Choledochal cysts (CCs) are characterized by dilations of the extra- and/or intrahepatic bile ducts. Surgery (cyst excision and Roux-en-Y hepaticojejunostomy) remains the gold standard for treatment. However, delayed hemorrhage can occur postoperatively, and although rare, it can be life-threatening. This study aimed to determine the risk factors and corresponding prevention of delayed hemorrhage after radical CC surgery, and to apply a technique to lower its incidence. Materials and Methods: This retrospective study enrolled 267 patients who received CC surgery between June 2016 and December 2020 at Shenzhen Children's Hospital. Univariate and multivariate logistic regression analyses were performed to identify risk factors for delayed hemorrhage. Results: Eleven (4.1%) patients had delayed hemorrhage after laparoscopic radical surgery. The most common hemorrhage site was the dissected surface between the cyst and adjacent structures with chronic severe adhesions, postoperatively. The occurrence of recurrent CC-associated complication and excessive total blood loss during surgery were risk factors for delayed hemorrhage after CC radical surgery. Length of disease course, operation when cholangitis/pancreatitis still existed, cyst diameter, and application of trypsin inhibitor after the surgery were not significantly different between the two groups. Conclusion: For patients without adhesions, complete cyst resection is the gold standard. However, for those with intensive adhesions, in cases of delayed hemorrhage on the dissection surface and malignancy transformation risk, the Lilly's technique with Roux-en-Y hepaticojejunostomy could be an alternative.


Asunto(s)
Quiste del Colédoco , Laparoscopía , Niño , Humanos , Quiste del Colédoco/cirugía , Estudios Retrospectivos , Anastomosis en-Y de Roux/efectos adversos , Anastomosis en-Y de Roux/métodos , Conductos Biliares Intrahepáticos/cirugía , Laparoscopía/métodos , Hemorragia/etiología
7.
Materials (Basel) ; 16(6)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36984374

RESUMEN

In this study, Ti-6Al-4V matrix composites reinforced with TiB ceramic whiskers were in situ synthesized and hydrogenated using the melt hydrogenation technique (MHT). The effects of MHT on the microstructure evolution and hot compression behavior of the composites were investigated by optical microscopy (OM), electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM). Hot compression tests were performed at strain rates of 0.1/s, 0.01/s, and 0.001/s and temperatures of 800 °C, 850 °C, and 900 °C; the hot workability of composites significantly improved after hydrogenation, for example, the 900 °C peak flow stress of hydrogenated composites (43 MPa) decreased by 53.76% compared with that of unhydrogenated ones (93 MPa) at a strain rate of 0.01/s. Microstructural observations show that MHT can effectively facilitate the dispersion of TiB whiskers and induce the α/ß lath refinement of the matrix in our as-cast hydrogenated composite. During hot compression, MHT effectively promoted the as-cast composite microstructure refinement, accelerated the dynamic recrystallization (DRX) generation, and reduced the stress concentration at the interface between the reinforcement and matrix; in turn, the hydrogenated composites presented low peak stress during hot compression.

8.
J Hazard Mater ; 449: 130994, 2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-36821898

RESUMEN

Microplastics (MPs) usually coexist with heavy metals (HMs) in soil. MPs can influence HMs mobility and bioavailability, but the underlying mechanisms remain largely unexplored. Here, polyethylene and polypropylene MPs were selected to investigate their effects and mechanisms of sorption-desorption, bioaccessibility and bioavailability of cadmium (Cd) in paddy soil. Batch experiments indicated that MPs significantly reduced the Cd sorption in soil (p < 0.05). Accordingly, soil with the MPs had lower boundary diffusion constant of Cd (C1= 0.847∼1.020) and the Freundlich sorption constant (KF = 0.444-0.616) than that without the MPs (C1 = 0.894∼1.035, KF = 0.500-0.655). X-ray diffraction, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy analyses suggested that the MPs reduced Cd chemisorption, by covering the soil active sites and thus blocking complexation of Cd with active oxygen sites and interrupting the formation of CdCO3 and Cd3P2 precipitates. Such effects of MPs enhanced about 1.2-1.5 times of Cd bioaccessibility and bioavailability in soil. Almost the same effects but different mechanisms of polyethylene and polypropylene MPs on Cd sorption in the soil indicated the complexity and pervasiveness of their effects. The findings provide new insights into impacts of MPs on the fate and risk of HMs in agricultural soil.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Microplásticos/química , Cadmio/química , Plásticos/química , Suelo , Polietileno/química , Polipropilenos , Disponibilidad Biológica , Adsorción , Contaminantes del Suelo/análisis
9.
Cancer Res ; 83(21): 3517-3528, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37494476

RESUMEN

DICER1 is an RNase III enzyme essential for miRNA biogenesis through cleaving precursor-miRNA hairpins. Germline loss-of-function DICER1 mutations underline the development of DICER1 syndrome, a rare genetic disorder that predisposes children to cancer development in organs such as lung, gynecologic tract, kidney, and brain. Unlike classical tumor suppressors, the somatic "second hit" in DICER1 syndrome-associated cancers does not fully inactivate DICER1 but impairs its RNase IIIb activity only, suggesting a noncanonical two-hit hypothesis. Here, we developed a genetically engineered conditional compound heterozygous Dicer1 mutant mouse strain that fully recapitulates the biallelic DICER1 mutations in DICER1 syndrome-associated human cancers. Crossing this tool strain with tissue-specific Cre strains that activate Dicer1 mutations in gynecologic tract cells at two distinct developmental stages revealed that embryonic biallelic Dicer1 mutations caused infertility in females by disrupting oviduct and endometrium development and ultimately drove cancer development. These multicystic tubal and intrauterine tumors histologically resembled a subset of DICER1 syndrome-associated human cancers. Molecular analysis uncovered accumulation of additional oncogenic events (e.g., aberrant p53 expression, Kras mutation, and Myc activation) in murine Dicer1 mutant tumors and validated miRNA biogenesis defects in 5P miRNA strand production, of which, loss of let-7 family miRNAs was identified as a putative key player in transcriptomic rewiring and tumor development. Thus, this DICER1 syndrome-associated cancer model recapitulates the biology of human cancer and provides a unique tool for future investigation and therapeutic development. SIGNIFICANCE: Generation of a Dicer1 mutant mouse model establishes the oncogenicity of missense mutations in the DICER1 RNase IIIb domain and provides a faithful model of DICER1 syndrome-associated cancer for further investigation.


Asunto(s)
MicroARNs , Síndromes Neoplásicos Hereditarios , Niño , Humanos , Femenino , Animales , Ratones , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , MicroARNs/genética , Mutación , Mutación Missense , ARN Helicasas DEAD-box/genética
10.
Sci Total Environ ; 813: 152082, 2022 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-34861310

RESUMEN

Grazing management is widely used to control grassland degradation in Inner Mongolia. However, the correlation between the soil physical properties, root traits, and infiltration patterns of different types of grazing management has seldom been studied. To reveal the effect of grazing management on water infiltration and preferential flow behavior, we first investigated the soil and plant properties in a grazing exclusion (19 years, GE), cold-season grazing (19 years, CG), and free-grazing grassland (19 years, FG) in a semi-arid grassland in Inner Mongolia. Dye tracer infiltration was adopted to obtain the water infiltration patterns from different types of grazing management. Finally, root biomass and root morphological traits were measured in a field experiment. The results showed that the plant height, vegetation coverage, richness index, Shannon-Wiener index, soil water content, total porosity, and mean weight diameter were higher at the GE site than at the FG site, whereas soil bulk density and sand content were lower at the GE site than at the FG site (P < 0.05). In addition, the root mean diameter, specific root length, and root mass density were higher at the GE site than at the FG site. As a result, differences in these root traits and soil and vegetation properties affected the preferential water flow behavior in the three types of grassland. The preferential flow evaluation index (PFI) of the GE, CG, and FG sites was 0.89, 0.30, and 0.15, respectively, which indicated that more obvious preferential flow occurred at the GE site than at the CG and FG sites. These findings highlight that the long-term GE enhanced plant density and root biomass, which could potentially promote the natural restoration of soil pores and preferential water infiltration. Therefore, local governments and herders should implement GE rather than other grazing management practices to prevent grassland degradation.


Asunto(s)
Pradera , Suelo , Biomasa , China , Agua
11.
Materials (Basel) ; 15(24)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36556690

RESUMEN

Improving the hot workability and reducing the processing cost are critical steps to expanding the application of TiC/Ti-6Al-4V composites. This study employed melt hydrogenation to fabricate TiC/Ti-6Al-4V composites under a mixed atmosphere of hydrogen and argon. Experimental results indicated that hydrogen had an obvious influence on the growth and morphology of eutectic TiC particles, and the size of eutectic TiC and primary ß grains was significantly increased. As a result, large-sized eutectic TiC was distributed along the grain boundaries of primary ß grains. Hot compression results showed that the peak flowing stress of composites was reduced by hydrogen, which resulted in an improvement of hot workability, especially in the (α + ß) phase region, and the best results were obtained at 900 °C/0.01 s-1, at which the peak stress decreased from 241 ± 9 to 190 ± 8 MPa (a decrease of 21.2%). Inspection of the microstructure after hot compression showed that hydrogen improved the proportion of DRX grains from ~62.7% to ~83.2%, and hydrogen also decreased the density of dislocations, which were attributed to hydrogen accelerating atomic diffusion. Enhanced hot workability resulted from hydrogen atoms decreasing the atomic bonding force of the titanium matrix, hydrogen reducing the ß/(α + ß) transition temperature, the higher proportion of DRX, and the higher mobility of dislocations. It is expected that the findings of this study may support the development of a simple and efficient method to reduce the processing cost of TiC/Ti-6Al-4V composites.

12.
Materials (Basel) ; 15(3)2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35161134

RESUMEN

Because of their superior mechanical performance at ultra-high temperatures, refractory niobium-silicon-based alloys are attractive high-temperature structural alloys, particularly as structural components in gas turbine engines. However, the development of niobium-silicon-based alloys for applications is limited because of the trade-off between room temperature fracture toughness and high-temperature strength. Here, we report on the fabrication of a Nb-18Si alloy with dispersion of hafnium carbide (HfC) particles through selective laser melting (SLM). XRD and SEM-BSE were used to examine the effects of scanning speed on the microstructure and the phase structure of the deposited Nb-18Si-5HfC alloy. The results show that when the scanning speed rises, the solid solubility of the solid solution improves, the interlamellar spacing of eutectics slowly decrease into nano-scale magnitude, and the corresponding hafnium carbide distribution becomes more uniform. We also discover the hafnium carbide particles dispersion in the inter-lamella structure, which contributes to its high fracture toughness property of 20.7 MPa∙m1/2 at room temperature. Hardness and fracture toughness are simultaneously improved because of the control of microstructure morphology and carbide distribution.

13.
J Hazard Mater ; 431: 128571, 2022 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-35278968

RESUMEN

Microcystins are frequently detected in cyanobacterial bloom-impacted sites; however, their mobility potential in soils is poorly understood. This study aimed to elucidate the sorption behaviors of microcystin-RR (MC-RR) in heterogeneous soils and evaluate critical affecting factors. MC-RR sorption followed the pseudo-second-order kinetics and Freundlich model. All isotherms (n = 0.83-1.03) had no or minor deviations from linearity. The linear distribution coefficients (Kd) varied from 2.64 to 15.2 across soils, depending mainly on OM and CEC. Stepwise regression analysis indicated that the Kd was predictable by the fitting formula of: Kd = 2.56 + 0.15OM + 0.28CEC (R2 = 0.45). The sorption was an endothermic physisorption process, involving electrostatic forces, cation exchange and bridging, H-bonding, ligand exchange, and van der Waals forces. The sorption of MC-RR (dominantly behaved as electroneutral zwitterions) at pH > 5 was insensitive to pH change, while more MC-RR (anionic species) was adsorbed at lower pH and in the presence of Ca2+. The study provides insights into the sorption of MC-RR across a range of soil properties and water chemistry for the first time, which is of importance for a better understanding of the mobility potential of microcystins in the terrestrial systems.


Asunto(s)
Cianobacterias , Contaminantes del Suelo , Adsorción , Microcistinas/química , Suelo/química , Contaminantes del Suelo/análisis
14.
Front Med (Lausanne) ; 9: 947729, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36507493

RESUMEN

Background: Hepatoblastoma (HB) is the most common liver malignancy in childhood with poor prognosis and lack of effective therapeutic targets. Single-cell transcriptome sequencing technology has been widely used in the study of malignant tumors, which can understand the tumor microenvironment and tumor heterogeneity. Materials and methods: Two children with HB and a healthy child were selected as the research subjects. Peripheral blood and tumor tissue were collected for single-cell transcriptome sequencing, and the sequencing data were compared and analyzed to describe the differences in the immune microenvironment between children with HB and normal children. Results: There were significant differences in the number and gene expression levels of natural killer cells (NK cells) between children with HB and normal children. More natural killer cells were seen in children with HB compared to normal control. KIR2DL were highly expressed in children with HB. Conclusion: Single-cell transcriptome sequencing of peripheral blood mononuclear cells (PBMC) and tumor tissue from children with HB revealed that KIR2DL was significantly up-regulated in NK cells from children with HB. HLA-C molecules on the surface of tumor cells interact with inhibitory receptor KIR2DL on the surface of NK cells, inhibiting the cytotoxicity of NK cells, resulting in immune escape of tumors. Inhibitors of related immune checkpoints to block the interaction between HLA-C and KIR2DL and enhance the cytotoxicity of NK cells, which may be a new strategy for HB treatment.

15.
Nanoscale ; 13(29): 12565-12576, 2021 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-34195726

RESUMEN

In order to acquire TiAl composites with a multi-scale reinforcing phase, and to improve the microstructure and tensile properties at elevated temperatures, TiAl alloys have been prepared with different added carbon content levels via vacuum arc melting. The results show that when the carbon content is greater than or equal to 1.0 at%, then Ti2AlC forms and the microstructure changes from having a dendrite morphology to an equiaxed crystal morphology. The B2 phase disappears in the Ti2AlC-containing alloys. As the carbon content increases from 0 to 3.0 at%, the lamellar colony size decreases from 148.4 to 32.8 µm and the lamellar width decreases from 441.2 to 117.6 nm. More nanoscale Ti2AlC particles form in the α2 lamellae at a higher carbon content, and there are a lot of dislocations around them. As the carbon content, the Ti2AlC content increases from 0 to 16.8 vol% and the length-diameter ratio decreases from 9.2 to 1.8. The reason for the microstructure refinement is that carbon and carbide act as heterogeneous particles during solidification, and carbide dissolves some alloy elements, improving the microstructure uniformity. Compressive testing shows that the maximum compressive strength is 2324.3 MPa at a carbon content of 1.5%. At a carbon content of 2.5%, the compression strain is higher (28.1%). Tensile testing at elevated temperatures shows that upon increasing the temperature from 750 to 850 °C, the tensile strength increases from 398 to 541 MPa, and the strain increases from 6.1 to 12.2% with a temperature increase from 750 to 950 °C. The increase in the mechanical properties is attributed to the refined lamellar colonies and lamellar width, the solid solution of elements, and the formation of nanoprecipitates.

16.
Int J Gen Med ; 14: 9419-9431, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34908869

RESUMEN

PURPOSE: This study aimed to identify novel methylation-regulated genes as diagnostic biomarkers and therapeutic targets for hepatoblastoma (HB). MATERIALS AND METHODS: The DNA methylation data of 19 HB tumor samples and 10 normal liver samples from the GSE78732 dataset and gene expression profiling data of 53 HB tumor samples and 14 normal liver samples from the GSE131329 dataset and 31 HB tumor samples and 32 normal liver samples from the GSE133039 dataset were downloaded form the Gene Expression Omnibus database. Next, differentially methylated genes (DMGs) and differentially expressed genes (DEGs) were identified. Venn diagrams were used to identify methylation-regulated genes. The VarElect online tool was selected to identify key methylation-regulated genes, and a protein-protein interaction (PPI) network was constructed to show the interactions among key methylation-regulated genes and DEGs. Finally, Gene Ontology annotation and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were performed to investigate the potential regulatory mechanisms of key methylation-regulated genes. RESULTS: A total of 457 DMGs and 1597 DEGs were identified between the HB and normal liver samples. After DMGs and DEGs overlapping, 22 hypomethylated and upregulated genes and 19 hypermethylated and downregulated genes in HB were screened. Survival analysis revealed that 13 methylation-regulated genes were associated with the prognosis of liver cancer. Moreover, SPP1, UHRF1, and HEY1 were selected as the key DNA methylation-regulated genes. The PPI network revealed that all of them could affect TP53, while both UHRF1 and HEY1 could influence BMP4. Enrichment analysis suggested that the DEGs were involved in TP53-related pathways, including the cell cycle and p53 signaling pathway. Finally, SPP1, UHRF1, and HEY1 were hypomethylated and upregulated in the HB samples compared with those in the normal liver samples. CONCLUSION: SPP1, UHRE1, and HEY1 may play important roles in HB and be used as biomarkers for its diagnosis and treatment.

17.
Nanoscale ; 12(6): 3965-3976, 2020 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-32016212

RESUMEN

High-entropy alloys (HEAs) with good ductility and high strength are usually prepared by a combination of forging and heat-treatment processes. In comparison, the as-cast HEAs typically do not reach strengths similar to those of HEAs produced by the forging and heat-treatment processes. Here we report a novel equiatomic-ratio CoCrCuMnNi HEA prepared by vacuum arc melting. We observe that this HEA has excellent mechanical properties, i.e., a yield strength of 458 MPa, and an ultimate tensile strength of 742 MPa with an elongation of 40%. Many nanometer precipitates (5-50 nm in size) and domains (5-10 nm in size) are found in the inter-dendrite and dendrite zones of the produced HEA, which is the key factor for its excellent mechanical properties. The enthalpy of mixing between Cu and Mn, Cr, Co, or Ni is higher than those of mixing between any two of Cr, Co, Ni and Mn, which leads to the separation of Cu from the CoCrCuMnNi HEA. Furthermore, we reveal the nanoscale-precipitate-phase-forming mechanism in the proposed HEA.

18.
Environ Int ; 137: 105263, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32087481

RESUMEN

Microplastics are emerging contaminants and their presence in water and soil ecosystems has recently drawn considerable attention because they pose a great threat to entire ecosystems. Recent researches have focused on the detection, occurrence, characterization, and toxicology of microplastics in marine and freshwater ecosystems; however, our understanding of the ecological effects of microplastics in soil ecosystems is still limited compared with that in aquatic ecosystems. Here, we have compiled literature, studying the sources, migration of microplastics in soil, negative impacts on soil health and function, trophic transfer in food chains, and the corresponding adverse effects on soil organisms in order to address the potential ecological and human health risks caused by microplastics in soil. This review aims to address gaps in knowledge, shed light on the ecological effects of microplastics in soil, and propose future studies on microplastic pollution and the resultant soil ecotoxicity. Furthermore, this review is focused on limiting microplastics in soil and establishing management and remediation measures to mitigate the risks posed by microplastic pollution.


Asunto(s)
Microplásticos , Contaminantes del Suelo , Ecosistema , Monitoreo del Ambiente , Humanos , Plásticos
19.
Sci Total Environ ; 726: 138573, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32311574

RESUMEN

Microbial fuel cell (MFC), a promising bio-electrochemical reactor could decompose organics in wastewater by redox processes of electro-active microorganism in anode and produce bio-energy, and the total MFC performance could mainly rely on electrochemical performance anode. Here, biomass carbon derived from municipal sludge was employed as low-cost and high-performance bio-anode for enhancing bioelectricity generation and wastewater treatment in MFC simultaneously. The electrochemical tests demonstrated that the large electrochemical active surface area, strong conductivity, and good biocompatibility in sludge carbon (SC) electrode resulted in higher power density (615.2 mW m-2) and lower power loss (5.4%) than those of none carbon (NC) electrode in long term operation. After 30-cycle of continuous running, the low loss of chemical oxygen demand (COD) removal was achieved up to 5.2%, which was smaller than that of NC electrode (14.1%), indicating that the MFC with SC anode could effectively treat wastewater and keep stable redox processes in anode electrode. After the formation of biofilm, the charge transfer resistance of SC electrode (16.38 Ω) was 72.4% lower than that of NC electrode (59.35 Ω). High-throughput analysis of biofilm exhibit Proteobacteria was the dominant electro-active bacteria, and the modification of SC could slightly change the bacterial community. Therefore, resource utilization of natural wastes provided the novel concept of anode catalyst fabrication for MFC in enhancing electron transfer, power output and wastewater decomposition.


Asunto(s)
Fuentes de Energía Bioeléctrica , Aguas Residuales , Biomasa , Carbono , Fibra de Carbono , Electricidad , Electrodos , Aguas del Alcantarillado
20.
Sci Rep ; 9(1): 5518, 2019 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-30940893

RESUMEN

In this article, microstructural evolution during the solidification of Ti-48Al-2Cr-2Nb with current density, as well as the formation mechanisms, are discussed, along with the impacts on microhardness and hot compression properties. The applied electric current promotes the solidification from the α primary phase to a largely ß solidification in Ti-48Al-2Cr-2Nb. With an increase in supercooling, the solidification process have a tendency to change from an α-led primary phase to (α + ß)-led primary phase. The primary dendrites, grain size, and lamellar spacing show a tendency to decrease first before increasing with increasing current density. Microhardness and high-temperature yield strength increase with a decrease in primary dendrite spacing, grain size, and lamellar spacing. Correlations between primary dendrite spacing, lamellar spacing, microhardness, yield strength, and current density are described by a fitting formula. An increase of α2 phase, due to the application of electric current, results in improved microhardness. The yield strength of Ti-48Al-2Cr-2Nb alloy increases linearly with microhardness. Yield stress increases with a decrease in microstructure parameters, in accordance with the Hall-Petch equation. The predominant modification mechanism with electric current application for TiAl solidification is the variation of supercooling and temperature gradients ahead of the mush zone due to Joule heating.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA