Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.045
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39127037

RESUMEN

The nuclear pore complex (NPC) is the sole mediator of nucleocytoplasmic transport. Despite great advances in understanding its conserved core architecture, the peripheral regions can exhibit considerable variation within and between species. One such structure is the cage-like nuclear basket. Despite its crucial roles in mRNA surveillance and chromatin organization, an architectural understanding has remained elusive. Using in-cell cryo-electron tomography and subtomogram analysis, we explored the NPC's structural variations and the nuclear basket across fungi (yeast; S. cerevisiae), mammals (mouse; M. musculus), and protozoa (T. gondii). Using integrative structural modeling, we computed a model of the basket in yeast and mammals that revealed how a hub of nucleoporins (Nups) in the nuclear ring binds to basket-forming Mlp/Tpr proteins: the coiled-coil domains of Mlp/Tpr form the struts of the basket, while their unstructured termini constitute the basket distal densities, which potentially serve as a docking site for mRNA preprocessing before nucleocytoplasmic transport.

2.
Nat Immunol ; 25(9): 1678-1691, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39060650

RESUMEN

Whole-exome sequencing of two unrelated kindreds with systemic autoimmune disease featuring antinuclear antibodies with IgG4 elevation uncovered an identical ultrarare heterozygous TNIP1Q333P variant segregating with disease. Mice with the orthologous Q346P variant developed antinuclear autoantibodies, salivary gland inflammation, elevated IgG2c, spontaneous germinal centers and expansion of age-associated B cells, plasma cells and follicular and extrafollicular helper T cells. B cell phenotypes were cell-autonomous and rescued by ablation of Toll-like receptor 7 (TLR7) or MyD88. The variant increased interferon-ß without altering nuclear factor kappa-light-chain-enhancer of activated B cells signaling, and impaired MyD88 and IRAK1 recruitment to autophagosomes. Additionally, the Q333P variant impaired TNIP1 localization to damaged mitochondria and mitophagosome formation. Damaged mitochondria were abundant in the salivary epithelial cells of Tnip1Q346P mice. These findings suggest that TNIP1-mediated autoimmunity may be a consequence of increased TLR7 signaling due to impaired recruitment of downstream signaling molecules and damaged mitochondria to autophagosomes and may thus respond to TLR7-targeted therapeutics.


Asunto(s)
Enfermedades Autoinmunes , Proteínas de Unión al ADN , Inmunoglobulina G , Factor 88 de Diferenciación Mieloide , Receptor Toll-Like 7 , Animales , Inmunoglobulina G/inmunología , Inmunoglobulina G/metabolismo , Humanos , Receptor Toll-Like 7/metabolismo , Receptor Toll-Like 7/genética , Receptor Toll-Like 7/inmunología , Ratones , Factor 88 de Diferenciación Mieloide/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Femenino , Masculino , Transducción de Señal , Mitocondrias/metabolismo , Secuenciación del Exoma , Anticuerpos Antinucleares/inmunología , Linfocitos B/inmunología , Ratones Noqueados , Ratones Endogámicos C57BL , Centro Germinal/inmunología , Linaje , Glándulas Salivales/inmunología , Glándulas Salivales/metabolismo , Glándulas Salivales/patología , Glicoproteínas de Membrana
3.
Cell ; 178(6): 1329-1343.e12, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31447177

RESUMEN

Assembly of Kaposi's sarcoma-associated herpesvirus (KSHV) begins at a bacteriophage-like portal complex that nucleates formation of an icosahedral capsid with capsid-associated tegument complexes (CATCs) and facilitates translocation of an ∼150-kb dsDNA genome, followed by acquisition of a pleomorphic tegument and envelope. Because of deviation from icosahedral symmetry, KSHV portal and tegument structures have largely been obscured in previous studies. Using symmetry-relaxed cryo-EM, we determined the in situ structure of the KSHV portal and its interactions with surrounding capsid proteins, CATCs, and the terminal end of KSHV's dsDNA genome. Our atomic models of the portal and capsid/CATC, together with visualization of CATCs' variable occupancy and alternate orientation of CATC-interacting vertex triplexes, suggest a mechanism whereby the portal orchestrates procapsid formation and asymmetric long-range determination of CATC attachment during DNA packaging prior to pleomorphic tegumentation/envelopment. Structure-based mutageneses confirm that a triplex deep binding groove for CATCs is a hotspot that holds promise for antiviral development.


Asunto(s)
Proteínas de la Cápside/química , Cápside/metabolismo , Empaquetamiento del ADN , Herpesvirus Humano 8/química , Herpesvirus Humano 8/fisiología , Sarcoma de Kaposi/virología , Ensamble de Virus , Microscopía por Crioelectrón/métodos , ADN Viral/metabolismo , Genoma Viral , Humanos , Modelos Moleculares
4.
Cell ; 172(4): 696-705.e12, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29398115

RESUMEN

Protein aggregation and dysfunction of the ubiquitin-proteasome system are hallmarks of many neurodegenerative diseases. Here, we address the elusive link between these phenomena by employing cryo-electron tomography to dissect the molecular architecture of protein aggregates within intact neurons at high resolution. We focus on the poly-Gly-Ala (poly-GA) aggregates resulting from aberrant translation of an expanded GGGGCC repeat in C9orf72, the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. We find that poly-GA aggregates consist of densely packed twisted ribbons that recruit numerous 26S proteasome complexes, while other macromolecules are largely excluded. Proximity to poly-GA ribbons stabilizes a transient substrate-processing conformation of the 26S proteasome, suggesting stalled degradation. Thus, poly-GA aggregates may compromise neuronal proteostasis by driving the accumulation and functional impairment of a large fraction of cellular proteasomes.


Asunto(s)
Alanina/análogos & derivados , Proteína C9orf72 , Neuronas , Ácido Poliglutámico , Complejo de la Endopetidasa Proteasomal , Agregado de Proteínas , Alanina/genética , Alanina/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/patología , Células HEK293 , Humanos , Neuronas/metabolismo , Neuronas/patología , Ácido Poliglutámico/genética , Ácido Poliglutámico/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Biosíntesis de Proteínas , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Ratas , Ratas Sprague-Dawley
5.
Nature ; 631(8022): 899-904, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38838737

RESUMEN

Synaptic vesicles are organelles with a precisely defined protein and lipid composition1,2, yet the molecular mechanisms for the biogenesis of synaptic vesicles are mainly unknown. Here we discovered a well-defined interface between the synaptic vesicle V-ATPase and synaptophysin by in situ cryo-electron tomography and single-particle cryo-electron microscopy of functional synaptic vesicles isolated from mouse brains3. The synaptic vesicle V-ATPase is an ATP-dependent proton pump that establishes the proton gradient across the synaptic vesicle, which in turn drives the uptake of neurotransmitters4,5. Synaptophysin6 and its paralogues synaptoporin7 and synaptogyrin8 belong to a family of abundant synaptic vesicle proteins whose function is still unclear. We performed structural and functional studies of synaptophysin-knockout mice, confirming the identity of synaptophysin as an interaction partner with the V-ATPase. Although there is little change in the conformation of the V-ATPase upon interaction with synaptophysin, the presence of synaptophysin in synaptic vesicles profoundly affects the copy number of V-ATPases. This effect on the topography of synaptic vesicles suggests that synaptophysin assists in their biogenesis. In support of this model, we observed that synaptophysin-knockout mice exhibit severe seizure susceptibility, suggesting an imbalance of neurotransmitter release as a physiological consequence of the absence of synaptophysin.


Asunto(s)
Sinaptofisina , ATPasas de Translocación de Protón Vacuolares , Animales , Masculino , Ratones , Microscopía por Crioelectrón , Ratones Noqueados , Modelos Moleculares , Neurotransmisores/metabolismo , Unión Proteica , Convulsiones/genética , Convulsiones/metabolismo , Vesículas Sinápticas/química , Vesículas Sinápticas/enzimología , Vesículas Sinápticas/ultraestructura , Sinaptofisina/química , Sinaptofisina/deficiencia , Sinaptofisina/metabolismo , Sinaptofisina/ultraestructura , ATPasas de Translocación de Protón Vacuolares/análisis , ATPasas de Translocación de Protón Vacuolares/química , ATPasas de Translocación de Protón Vacuolares/metabolismo , ATPasas de Translocación de Protón Vacuolares/ultraestructura , Tomografía con Microscopio Electrónico
6.
Nature ; 600(7887): 54-58, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34666338

RESUMEN

The Moon has a magmatic and thermal history that is distinct from that of the terrestrial planets1. Radioisotope dating of lunar samples suggests that most lunar basaltic magmatism ceased by around 2.9-2.8 billion years ago (Ga)2,3, although younger basalts between 3 Ga and 1 Ga have been suggested by crater-counting chronology, which has large uncertainties owing to the lack of returned samples for calibration4,5. Here we report a precise lead-lead age of 2,030 ± 4 million years ago for basalt clasts returned by the Chang'e-5 mission, and a 238U/204Pb ratio (µ value)6 of about 680 for a source that evolved through two stages of differentiation. This is the youngest crystallization age reported so far for lunar basalts by radiometric dating, extending the duration of lunar volcanism by approximately 800-900 million years. The µ value of the Chang'e-5 basalt mantle source is within the range of low-titanium and high-titanium basalts from Apollo sites (µ value of about 300-1,000), but notably lower than those of potassium, rare-earth elements and phosphorus (KREEP) and high-aluminium basalts7 (µ value of about 2,600-3,700), indicating that the Chang'e-5 basalts were produced by melting of a KREEP-poor source. This age provides a pivotal calibration point for crater-counting chronology in the inner Solar System and provides insight on the volcanic and thermal history of the Moon.

7.
Genome Res ; 33(3): 401-411, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-37310927

RESUMEN

We developed an analysis pipeline that can extract microbial sequences from spatial transcriptomic (ST) data and assign taxonomic labels, generating a spatial microbial abundance matrix in addition to the default host expression matrix, enabling simultaneous analysis of host expression and microbial distribution. We called the pipeline spatial metatranscriptome (SMT) and applied it on both human and murine intestinal sections and validated the spatial microbial abundance information with alternative assays. Biological insights were gained from these novel data that showed host-microbe interaction at various spatial scales. Finally, we tested experimental modification that can increase microbial capture while preserving host spatial expression quality and, by use of positive controls, quantitatively showed the capture efficiency and recall of our methods. This proof-of-concept work shows the feasibility of SMT analysis and paves the way for further experimental optimization and application.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Humanos , Animales , Ratones
8.
Nat Methods ; 20(2): 268-275, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36646896

RESUMEN

Cryo-electron tomography (cryo-ET) is a revolutionary technique for resolving the structure of subcellular organelles and macromolecular complexes in their cellular context. However, the application of the cryo-ET is hampered by the sample preparation step. Performing cryo-focused ion beam milling at an arbitrary position on the sample is inefficient, and the target of interest is not guaranteed to be preserved when thinning the cell from several micrometers to less than 300 nm thick. Here, we report a cryogenic correlated light, ion and electron microscopy (cryo-CLIEM) technique that is capable of preparing cryo-lamellae under the guidance of three-dimensional confocal imaging. Moreover, we demonstrate a workflow to preselect and preserve nanoscale target regions inside the finished cryo-lamellae. By successfully preparing cryo-lamellae that contain a single centriole or contact sites between subcellular organelles, we show that this approach is generally applicable, and shall help in innovating more applications of cryo-ET.


Asunto(s)
Tomografía con Microscopio Electrónico , Manejo de Especímenes , Tomografía con Microscopio Electrónico/métodos , Sustancias Macromoleculares/química , Manejo de Especímenes/métodos , Electrones , Imagenología Tridimensional/métodos , Microscopía por Crioelectrón/métodos
9.
Nat Methods ; 20(7): 1104-1113, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37429962

RESUMEN

Genetically encoded voltage indicators (GEVIs) enable optical recording of electrical signals in the brain, providing subthreshold sensitivity and temporal resolution not possible with calcium indicators. However, one- and two-photon voltage imaging over prolonged periods with the same GEVI has not yet been demonstrated. Here, we report engineering of ASAP family GEVIs to enhance photostability by inversion of the fluorescence-voltage relationship. Two of the resulting GEVIs, ASAP4b and ASAP4e, respond to 100-mV depolarizations with ≥180% fluorescence increases, compared with the 50% fluorescence decrease of the parental ASAP3. With standard microscopy equipment, ASAP4e enables single-trial detection of spikes in mice over the course of minutes. Unlike GEVIs previously used for one-photon voltage recordings, ASAP4b and ASAP4e also perform well under two-photon illumination. By imaging voltage and calcium simultaneously, we show that ASAP4b and ASAP4e can identify place cells and detect voltage spikes with better temporal resolution than commonly used calcium indicators. Thus, ASAP4b and ASAP4e extend the capabilities of voltage imaging to standard one- and two-photon microscopes while improving the duration of voltage recordings.


Asunto(s)
Encéfalo , Calcio , Animales , Ratones , Iluminación , Microscopía , Fotones
10.
Nature ; 578(7794): 296-300, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32025036

RESUMEN

The proteasome is a major proteolytic machine that regulates cellular proteostasis through selective degradation of ubiquitylated proteins1,2. A number of ubiquitin-related molecules have recently been found to be involved in the regulation of biomolecular condensates or membraneless organelles, which arise by liquid-liquid phase separation of specific biomolecules, including stress granules, nuclear speckles and autophagosomes3-8, but it remains unclear whether the proteasome also participates in such regulation. Here we reveal that proteasome-containing nuclear foci form under acute hyperosmotic stress. These foci are transient structures that contain ubiquitylated proteins, p97 (also known as valosin-containing protein (VCP)) and multiple proteasome-interacting proteins, which collectively constitute a proteolytic centre. The major substrates for degradation by these foci were ribosomal proteins that failed to properly assemble. Notably, the proteasome foci exhibited properties of liquid droplets. RAD23B, a substrate-shuttling factor for the proteasome, and ubiquitylated proteins were necessary for formation of proteasome foci. In mechanistic terms, a liquid-liquid phase separation was triggered by multivalent interactions of two ubiquitin-associated domains of RAD23B and ubiquitin chains consisting of four or more ubiquitin molecules. Collectively, our results suggest that ubiquitin-chain-dependent phase separation induces the formation of a nuclear proteolytic compartment that promotes proteasomal degradation.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Estrés Fisiológico , Ubiquitinación , Línea Celular , Núcleo Celular/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Presión Osmótica , Poliubiquitina/metabolismo , Proteolisis , Proteostasis , Proteínas Ribosómicas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteína que Contiene Valosina/metabolismo
12.
Proc Natl Acad Sci U S A ; 120(48): e2307389120, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37983515

RESUMEN

Granulocytes are indispensable for various immune responses. Unlike other cell types in the body, the nuclei of granulocytes, particularly neutrophils, are heavily segmented into multiple lobes. Although this distinct morphological feature has long been observed, the underlying mechanism remains incompletely characterized. In this study, we utilize cryo-electron tomography to examine the nuclei of mouse neutrophils, revealing the cytoplasmic enrichment of intermediate filaments on the concave regions of the nuclear envelope. Aided by expression profiling and immuno-electron microscopy, we then elucidate that the intermediate-filament protein vimentin is responsible for such perinuclear structures. Of importance, exogenously expressed vimentin in nonimmune cells is sufficient to form cytoplasmic filaments wrapping on the concave nuclear surface. Moreover, genetic deletion of the protein causes a significant reduction of the number of nuclear lobes in neutrophils and eosinophils, mimicking the hematological condition of the Pelger-Huët anomaly. These results have uncovered a new component establishing the nuclear segmentation of granulocytes.


Asunto(s)
Filamentos Intermedios , Neutrófilos , Animales , Ratones , Neutrófilos/metabolismo , Vimentina/metabolismo , Núcleo Celular , Eosinófilos
13.
Proc Natl Acad Sci U S A ; 120(49): e2306777120, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38032937

RESUMEN

Peripheral neural interfaces, potent in modulating local and systemic immune responses for disease treatment, face significant challenges due to the peripheral nerves' broad distribution in tissues like the fascia, periosteum, and skin. The incongruity between static electronic components and the dynamic, complex organization of the peripheral nervous system often leads to interface failure, stalling circuit research and clinical applications. To overcome these, we developed a self-assembling, tissue-adaptive electrode composed of a single-component cocktail nanosheet colloid, including dopants, conducting polymers, stabilizers, and an MXene catalyst. Delivered via a jet injector to designated nerve terminals, this assembly utilizes reactive oxygen species to catalytically dope poly (3,4-ethylenedioxythiophene), enhancing π-π interactions between nanosheets, and yielding a conductive, biodegradable interface. This interface effectively regulates local immune activity and promotes sensory and motor nerve functional restoration in nerve-injured mice, while engaging the vagal-adrenal axis in freely moving mice, eliciting catecholamine neurotransmitter release, and suppressing systemic cytokine storms. This innovative strategy specifically targets nerve substructures, bolstering local and systemic immune modulation, and paving the way for the development of self-adaptive dynamic neural interfaces.


Asunto(s)
Nervios Periféricos , Sistema Nervioso Periférico , Ratones , Animales , Polímeros/química , Electrodos
14.
Plant Physiol ; 195(3): 2274-2288, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38487893

RESUMEN

Light and temperature are 2 major environmental factors that affect the growth and development of plants during their life cycle. Plants have evolved complex mechanisms to adapt to varying external environments. Here, we show that JASMONATE ZIM-domain protein 3 (JAZ3), a jasmonic acid signaling component, acts as a factor to integrate light and temperature in regulating seedling morphogenesis. JAZ3 overexpression transgenic lines display short hypocotyls under red, far-red, and blue light and warm temperature (28 °C) conditions compared to the wild type in Arabidopsis (Arabidopsis thaliana). We show that JAZ3 interacts with the transcription factor PHYTOCHROME-INTERACTING FACTOR4 (PIF4). Interestingly, JAZ3 spontaneously undergoes liquid-liquid phase separation (LLPS) in vitro and in vivo and promotes LLPS formation of PIF4. Moreover, transcriptomic analyses indicate that JAZ3 regulates the expression of genes involved in many biological processes, such as response to auxin, auxin-activated signaling pathway, regulation of growth, and response to red light. Finally, JAZ3 inhibits the transcriptional activation activity and binding ability of PIF4. Collectively, our study reveals a function and molecular mechanism of JAZ3 in regulating plant growth in response to environmental factors such as light and temperature.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Regulación de la Expresión Génica de las Plantas , Luz , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Temperatura , Plantas Modificadas Genéticamente , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Hipocótilo/crecimiento & desarrollo , Hipocótilo/genética , Hipocótilo/metabolismo , Transducción de Señal , Plantones/crecimiento & desarrollo , Plantones/genética , Plantones/metabolismo , Plantones/efectos de la radiación , Morfogénesis/efectos de la radiación , Morfogénesis/genética , Vernalización
15.
FASEB J ; 38(7): e23554, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38588175

RESUMEN

Bones can form the scaffolding of the body, support the organism, coordinate somatic movements, and control mineral homeostasis and hematopoiesis. The immune system plays immune supervisory, defensive, and regulatory roles in the organism, which mainly consists of immune organs (spleen, bone marrow, tonsils, lymph nodes, etc.), immune cells (granulocytes, platelets, lymphocytes, etc.), and immune molecules (immune factors, interferons, interleukins, tumor necrosis factors, etc.). Bone and the immune system have long been considered two distinct fields of study, and the bone marrow, as a shared microenvironment between the bone and the immune system, closely links the two. Osteoimmunology organically combines bone and the immune system, elucidates the role of the immune system in bone, and creatively emphasizes its interdisciplinary characteristics and the function of immune cells and factors in maintaining bone homeostasis, providing new perspectives for skeletal-related field research. In recent years, bone immunology has gradually become a hot spot in the study of bone-related diseases. As a new branch of immunology, bone immunology emphasizes that the immune system can directly or indirectly affect bones through the RANKL/RANK/OPG signaling pathway, IL family, TNF-α, TGF-ß, and IFN-γ. These effects are of great significance for understanding inflammatory bone loss caused by various autoimmune or infectious diseases. In addition, as an external environment that plays an important role in immunity and bone, this study pays attention to the role of exercise-mediated bone immunity in bone reconstruction.


Asunto(s)
Huesos , Osteoclastos , Osteoclastos/metabolismo , Huesos/metabolismo , Remodelación Ósea , Transducción de Señal , Sistema Inmunológico , Ligando RANK/metabolismo
16.
Nature ; 570(7760): 257-261, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31142842

RESUMEN

Herpesviruses are enveloped viruses that are prevalent in the human population and are responsible for diverse pathologies, including cold sores, birth defects and cancers. They are characterized by a highly pressurized pseudo-icosahedral capsid-with triangulation number (T) equal to 16-encapsidating a tightly packed double-stranded DNA (dsDNA) genome1-3. A key process in the herpesvirus life cycle involves the recruitment of an ATP-driven terminase to a unique portal vertex to recognize, package and cleave concatemeric dsDNA, ultimately giving rise to a pressurized, genome-containing virion4,5. Although this process has been studied in dsDNA phages6-9-with which herpesviruses bear some similarities-a lack of high-resolution in situ structures of genome-packaging machinery has prevented the elucidation of how these multi-step reactions, which require close coordination among multiple actors, occur in an integrated environment. To better define the structural basis of genome packaging and organization in herpes simplex virus type 1 (HSV-1), we developed sequential localized classification and symmetry relaxation methods to process cryo-electron microscopy (cryo-EM) images of HSV-1 virions, which enabled us to decouple and reconstruct hetero-symmetric and asymmetric elements within the pseudo-icosahedral capsid. Here we present in situ structures of the unique portal vertex, genomic termini and ordered dsDNA coils in the capsid spooled around a disordered dsDNA core. We identify tentacle-like helices and a globular complex capping the portal vertex that is not observed in phages, indicative of herpesvirus-specific adaptations in the DNA-packaging process. Finally, our atomic models of portal vertex elements reveal how the fivefold-related capsid accommodates symmetry mismatch imparted by the dodecameric portal-a longstanding mystery in icosahedral viruses-and inform possible DNA-sequence recognition and headful-sensing pathways involved in genome packaging. This work showcases how to resolve symmetry-mismatched elements in a large eukaryotic virus and provides insights into the mechanisms of herpesvirus genome packaging.


Asunto(s)
Microscopía por Crioelectrón , Empaquetamiento del ADN , Genoma Viral , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/ultraestructura , Conformación de Ácido Nucleico , Cápside/química , Cápside/ultraestructura , ADN Viral/química , ADN Viral/ultraestructura , Herpesvirus Humano 1/química , Modelos Moleculares , Virión/química , Virión/genética , Virión/ultraestructura
17.
Mol Cell ; 68(3): 591-604.e5, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-29100056

RESUMEN

The Hippo pathway is crucial in organ size control and tissue homeostasis, with deregulation leading to cancer. An extracellular nutrition signal, such as glucose, regulates the Hippo pathway activation. However, the mechanisms are still not clear. Here, we found that the Hippo pathway is directly regulated by the hexosamine biosynthesis pathway (HBP) in response to metabolic nutrients. Mechanistically, the core component of Hippo pathway (YAP) is O-GlcNAcylated by O-GlcNAc transferase (OGT) at serine 109. YAP O-GlcNAcylation disrupts its interaction with upstream kinase LATS1, prevents its phosphorylation, and activates its transcriptional activity. And this activation is not dependent on AMPK. We also identified OGT as a YAP-regulated gene that forms a feedback loop. Finally, we confirmed that glucose-induced YAP O-GlcNAcylation and activation promoted tumorigenesis. Together, our data establish a molecular mechanism and functional significance of the HBP in directly linking extracellular glucose signal to the Hippo-YAP pathway and tumorigenesis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Transformación Celular Neoplásica/metabolismo , Glucosa/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Neoplasias/enzimología , Fosfoproteínas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Regulación Neoplásica de la Expresión Génica , Glicosilación , Células HEK293 , Células HeLa , Humanos , Ratones Desnudos , Neoplasias/genética , Neoplasias/patología , Fosfoproteínas/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Serina , Transducción de Señal , Factores de Tiempo , Factores de Transcripción , Transcripción Genética , Activación Transcripcional , Proteínas Señalizadoras YAP
18.
Proc Natl Acad Sci U S A ; 119(39): e2117988119, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36126099

RESUMEN

Triple-negative breast cancer (TNBC) is the most challenging breast cancer subtype for its high rates of relapse, great metastatic potential, and short overall survival. How cancer cells acquire metastatic potency through the conversion of noncancer stem-like cells into cancer cells with stem-cell properties is poorly understood. Here, we identified the long noncoding RNA (lncRNA) TGFB2-AS1 as an important regulator of the reversibility and plasticity of noncancer stem cell populations in TNBC. We revealed that TGFB2-AS1 impairs the breast cancer stem-like cell (BCSC) traits of TNBC cells in vitro and dramatically decreases tumorigenic frequency and lung metastasis in vivo. Mechanistically, TGFB2-AS1 interacts with SMARCA4, a core subunit of the SWI/SNF chromatin remodeling complex, and results in transcriptional repression of its target genes including TGFB2 and SOX2 in an in cis or in trans way, leading to inhibition of transforming growth factor ß (TGFß) signaling and BCSC characteristics. In line with this, TGFB2-AS1 overexpression in an orthotopic TNBC mouse model remarkably abrogates the enhancement of tumor growth and lung metastasis endowed by TGFß2. Furthermore, combined prognosis analysis of TGFB2-AS1 and TGFß2 in TNBC patients shows that high TGFB2-AS1 and low TGFß2 levels are correlated with better outcome. These findings demonstrate a key role of TGFB2-AS1 in inhibiting disease progression of TNBC based on switching the cancer cell fate of TNBC and also shed light on the treatment of TNBC patients.


Asunto(s)
Neoplasias Pulmonares , ARN Largo no Codificante , Neoplasias de la Mama Triple Negativas , Animales , ADN Helicasas/genética , Humanos , Neoplasias Pulmonares/secundario , Ratones , Recurrencia Local de Neoplasia , Proteínas Nucleares/genética , ARN Largo no Codificante/genética , Factores de Transcripción SOXB1/genética , Factores de Transcripción/genética , Factor de Crecimiento Transformador beta2/genética , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología
19.
Chem Soc Rev ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39212091

RESUMEN

By engineering chemically identical but structurally distinct materials into intricate and sophisticated polytypic nanostructures, which often surpass their pure phase objects and even produce novel physical and chemical properties, exciting applications in the fields of photovoltaics, electronics and photocatalysis can be achieved. In recent decades, various methods have been developed for synthesizing a library of polytypic nanocrystals encompassing IV, III-V and II-VI polytypic semiconductors. The exceptional performances of polytypic metal chalcogenide nanocrystals have been observed, making them highly promising candidates for applications in photonics and electronics. However, achieving high-precision control over the morphology, composition, crystal structure, size, homojunctions, and periodicity of polytypic metal chalcogenide nanostructures remains a significant synthetic challenge. This review article offers a comprehensive overview of recent progress in the synthesis and control of polytypic metal chalcogenide nanocrystals using colloidal synthetic strategies. Starting from a concise introduction on the crystal structures of metal chalcogenides, the subsequent discussion delves into the colloidal synthesis of polytypic metal chalcogenide nanocrystals, followed by an in-depth exploration of the key factors governing polytypic structure construction. Subsequently, we provide comprehensive insights into the physical properties of polytypic metal chalcogenide nanocrystals, which exhibit strong correlations with their applications. Thereafter, we emphasize the significance of polytypic nanostructures in various applications, such as photovoltaics, photocatalysis, transistors, thermoelectrics, stress sensors, and the electrocatalytic hydrogen evolution. Finally, we present a summary of the recent advancements in this research field and provide insightful perspectives on the forthcoming challenges, opportunities, and future research directions.

20.
Nano Lett ; 24(13): 3843-3850, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38437628

RESUMEN

Nanostructured metals with conventional grain boundaries or interfaces exhibit high strength yet usually poor ductility. Here we report an interface engineering strategy that breaks the strength-ductility dilemma via externally incorporating graphene oxide at lamella boundaries of aluminum (Al) nanolaminates. By forming the binary intergranular films where graphene oxide was sandwiched between two amorphous alumina layers, the Al-based composite nanolaminates achieved ultrahigh compressive strength (over 1 GPa) while retaining excellent plastic deformability. Complementing experimental results with molecular dynamics simulation efforts, the ultrahigh strength was interpreted by the strong blocking effect of the binary intergranular films on dislocation nucleation and propagation, and the excellent plasticity was found to originate from the stress/strain-induced crystalline-to-amorphous transition of graphene oxide and the synergistic deformation between Al nanolamellas and the binary intergranular films.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA