Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cancer Sci ; 115(7): 2254-2268, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38746998

RESUMEN

Esophageal squamous cell carcinoma (ESCC) represents a frequently seen malignancy with high prevalence worldwide. Although current studies have shown that Wilms' tumor 1-associated protein (WTAP), a major part in the methyltransferase complex, is involved in various tumor pathological processes, its specific role in ESCC remains unclear. Therefore, the present work focused on exploring WTAP's function and mechanism in ESCC progression using clinical ESCC specimens, ESCC cells, and mammalian models. Firstly, we proved WTAP was significantly upregulated within ESCC, and WTAP mRNA expression showed a good diagnostic performance for ESCC. Functionally, WTAP positively regulated in-vivo and in-vitro ESCC cells' malignant phenotype through the AKT-mTOR signaling pathway. Meanwhile, WTAP positively regulated the N6-methyladenosine (m6A) modification levels in ESCC cells. Protein tyrosine phase type IVA member 1 (PTP4A1) was confirmed to be the m6A target of WTAP, and WTAP positively regulated the expression of PTP4A1. Further study revealed that PTP4A1 showed high expression within ESCC. Silencing PTP4A1 inhibited the AKT-mTOR signaling pathway to suppress ESCC cells' proliferation. Rescue experiments showed that silencing PTP4A1 partially reversed the WTAP-promoting effect on ESCC cells' proliferation ability. Mechanistically, WTAP regulated PTP4A1 expression to activate the AKT-mTOR pathway, promoting the proliferation of ESCC cells. Our study demonstrated that WTAP regulates the progression of ESCC through the m6A-PTP4A1-AKT-mTOR signaling axis and that WTAP is a potential target for diagnosing and treating ESCC.


Asunto(s)
Adenosina , Proteínas de Ciclo Celular , Proliferación Celular , Epigénesis Genética , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Regulación Neoplásica de la Expresión Génica , Proteínas Proto-Oncogénicas c-akt , Serina-Treonina Quinasas TOR , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Adenosina/análogos & derivados , Adenosina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/patología , Carcinoma de Células Escamosas de Esófago/metabolismo , Ratones Desnudos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factores de Empalme de ARN , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/genética , Regulación hacia Arriba
2.
J Transl Med ; 22(1): 207, 2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-38414006

RESUMEN

With an estimated one million new cases reported annually, gastric cancer (GC) ranks as the fifth most diagnosed malignancy worldwide. The early detection of GC remains a major challenge, and the prognosis worsens either when patients develop resistance to chemotherapy or radiotherapy or when the cancer metastasizes. The precise pathogenesis underlying GC is not well understood, which further complicates its treatment. Circular RNAs (circRNAs), a recently discovered class of noncoding RNAs that originate from parental genes through "back-splicing", have been shown to play a key role in various biological processes in both eukaryotes and prokaryotes. CircRNAs have been linked to cardiovascular diseases, diabetes, hypertension, Alzheimer's disease, and the occurrence and progression of tumors. Prior studies have established that circRNAs play a crucial role in GC, impacting tumorigenesis, diagnosis, progression, and therapy resistance. This review aims to summarize how circRNAs contribute to GC tumorigenesis and progression, examine their roles in the development of drug resistance, discuss their potential as biotechnological drugs, and summarize their response to therapeutic drugs and microorganism in GC.


Asunto(s)
ARN Circular , Neoplasias Gástricas , Humanos , ARN Circular/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/terapia , Neoplasias Gástricas/diagnóstico , Pronóstico , Carcinogénesis/genética , Transformación Celular Neoplásica
3.
Ecotoxicol Environ Saf ; 283: 116793, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39094453

RESUMEN

Biomass-related airborne fine particulate matter (PM2.5) is an important risk factor for chronic obstructive pulmonary disease (COPD). Macrophage polarization has been reported to be involved in PM2.5-induced COPD, but the dynamic characteristics and underlying mechanism of this process remain unclear. Our study established a PM2.5-induced COPD mouse model and revealed that M2 macrophages predominantly presented after 4 and 6 months of PM2.5 exposure, during which a notable increase in MMP12 was observed. Single cell analysis of lung tissues from COPD patients and mice further revealed that M2 macrophages were the dominant macrophage subpopulation in COPD, with MMP12 being involved as a hub gene. In vitro experiments further demonstrated that PM2.5 induced M2 polarization and increased MMP12 expression. Moreover, we found that PM2.5 increased IL-4 expression, STAT6 phosphorylation and nuclear translocation. Nuclear pSTAT6 then bound to the MMP12 promoter region. Furthermore, the inhibition of STAT6 phosphorylation effectively abrogated the PM2.5-induced increase in MMP12. Using a coculture system, we observed a significantly reduced level of E-cadherin in alveolar epithelial cells cocultured with PM2.5-exposed macrophages, while the decrease in E-cadherin was reversed by the addition of an MMP12 inhibitor to the co-culture system. Taken together, these findings indicated that PM2.5 induced M2 macrophage polarization and MMP12 upregulation via the IL-4/STAT6 pathway, which resulted in alveolar epithelial barrier dysfunction and excessive extracellular matrix (ECM) degradation, and ultimately led to COPD progression. These findings may help to elucidate the role of macrophages in COPD, and suggest promising directions for potential therapeutic strategies.

4.
J Cancer Res Clin Oncol ; 150(3): 163, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38546882

RESUMEN

PURPOSE: To investigate the effect of urocortin-1 (UCN-1) on growth, migration, and apoptosis in colorectal cancer (CRC) in vivo and vitro and the mechanism by which UCN-1 modulates CRC cells in vitro. METHODS: The correlation between UCN-1 and CRC was evaluated using The Cancer Genome Atlas (TCGA) database and a tissue microarray. The expression of UCN-1 in CRC cells was assessed using quantitative real-time polymerase chain reaction (RT-qPCR) and western blotting. In vitro, the influence of UCN-1 on the proliferation, apoptosis, and migration of HT-29, HCT-116, and RKO cells was explored using the celigo cell counting assay or cell counting kit-8 (CCK8), flow cytometry, and wound healing or Transwell assays, respectively. In vivo, the effect of UCN-1 on CRC growth and progression was evaluated in nude mice. The downstream pathway underlying UCN-1-mediated regulation of CRC was determined using the phospho-kinase profiler array in RKO cells. Lentiviruses were used to knockdown or upregulate UCN-1 expression in cells. RESULTS: Both the TCGA and tissue microarray results showed that UCN-1 was strongly expressed in the tissues of patients with CRC. Furthermore, the tissue microarray results showed that the expression of UCN-1 was higher in male than in female patients, and high expression of UCN-1 was associated with higher risk of lymphatic metastasis and later pathological stage. UCN-1 knockdown caused a reduction in CRC cell proliferation, migration, and colony formation, as well as an increase in apoptosis. In xenograft experiments, tumors generated from RKO cells with UCN-1 knockdown exhibited reduced volumes and weights. A reduction in the expression of Ki-67 in xenograft tumors indicated that UCN-1 knockdown curbed tumor growth. The human phospho-kinase array showed that the p53 signaling pathway participated in UCN-1-mediated CRC development. The suppression in migration and proliferation caused by UCN-1 knockdown was reversed by inhibitors of p53 signal pathway, while the increase in cell apoptosis was suppressed. On the other hand, overexpression of UCN-1 promoted proliferation and migration and inhibited apoptosis in CRC cells. Overexpression of p53 reversed the effect of UCN-1 overexpression on CRC development. CONCLUSION: UCN-1 promotes migration and proliferation and inhibits apoptosis via inhibition of the p53 signaling pathway.


Asunto(s)
Neoplasias Colorrectales , Proteína p53 Supresora de Tumor , Animales , Ratones , Humanos , Masculino , Femenino , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Urocortinas/genética , Urocortinas/metabolismo , Urocortinas/farmacología , Línea Celular Tumoral , Ratones Desnudos , Neoplasias Colorrectales/patología , Apoptosis , Transducción de Señal , Proliferación Celular , Movimiento Celular , Regulación Neoplásica de la Expresión Génica
5.
Artículo en Inglés | MEDLINE | ID: mdl-39151815

RESUMEN

Radial glial cells (RGCs) are remarkable cells, essential for normal development of the vertebrate central nervous system. In teleost fishes, RGCs play a pivotal role in neurogenesis and regeneration of injured neurons and glia. RGCs also exhibit resilience to environmental stressors like hypoxia via metabolic adaptations. In this study, we assessed the physiology of RGCs following varying degrees of hypoxia, with an emphasis on reactive oxygen species (ROS) generation, mitochondrial membrane potential (MMP), mitophagy, and energy metabolism. Our findings demonstrated that hypoxia significantly elevated ROS production and induced MMP depolarization in RGCs. The mitochondrial disturbances were closely associated with increased mitophagy, based on the co-localization of mitochondria and lysosomes. Key mitophagy-related genes were also up-regulated, including those of the BNIP3/NIX mediated pathway as well as the FUNDC1 mediated pathway. Such responses suggest robust cellular mechanisms are initiated to counteract mitochondrial damage due to increasing hypoxia. A significant metabolic shift from oxidative phosphorylation to glycolysis was also observed in RGCs, which may underlie an adaptive response to sustain cellular function and viability following a reduction in oxygen availability. Furthermore, hypoxia inhibited the synthesis of mitochondrial complexes subunits in RGCs, potentially related to elevated HIF-2α expression with 3 % O2. Taken together, RGCs appear to exhibit complex adaptive responses to hypoxic stress, characterized by metabolic reprogramming and the activation of mitophagy pathways to mitigate mitochondrial dysfunction.

6.
ACS Appl Mater Interfaces ; 16(2): 2351-2364, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38175742

RESUMEN

Heterojunction structure and ion doping techniques are viable tactics in facilitating the generation and separation of photogenerated electrons and holes in photocatalysis. In the current study, a novel Bi ion-doped MIL-68(In,Bi)-NH2@BiOBr (MIBN@BOB) type-II heterojunction was first synthesized in a one-step solvothermal reaction. Doping of Bi ions not only broadened the light-sensing range but also provided reliable anchor sites for the in situ growth of BiOBr. Meanwhile, the heterostructure supplied new channels for photogenerated carriers, accelerating the transfer and inhibiting the recombination of photogenerated electron-hole. The obtained MIBN@BOB exhibited enhanced photocatalytic performance (91.1%) than MIL-68(In)-NH2 (40.8%) and BiOBr (57.5%) in ciprofloxacin (CIP) degradation under visible light, with excellent reusability. Photocatalysts were characterized in detail, and a series of photoelectrochemical tests were utilized to analyze the photoelectric properties. MIBN@BOB were deduced to conform the electron conduction mechanism of conventional type-II heterojunctions. More importantly, based on the above experiments and density functional theory (DFT) calculation, BiOBr-Bi in MIBN@BOB can serve as the major active sites of CIP enrichment, and •O2- and 1O2 generated at the BiOBr interface can react with the adsorbed CIP directly. Lastly, the possible degradation products and pathways of CIP were analyzed by liquid chromatography-tandem mass spectrometry (LC/MS/MS). This study provides a reference for the construction of ion-doping-modified metal-organic framework (MOF)-based heterojunction photocatalysts and their application in antibiotic removal.

7.
Adv Sci (Weinh) ; 11(28): e2403120, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38728591

RESUMEN

The DNA-guided (gDNA) Argonaute from Thermus thermophilus (TtAgo) has little potential for nucleic acid detection and gene editing due to its poor dsDNA cleavage activity at relatively low temperature. Herein, the dsDNA cleavage activity of TtAgo is enhanced by using 2'-fluorine (2'F)-modified gDNA and developes a novel nucleic acid testing strategy. This study finds that the gDNA with 2'F-nucleotides at the 3'-end (2'F-gDNA) can promote the assembly of the TtAgo-guide-target ternary complex significantly by increasing its intermolecular force to target DNA and TtAgo, thereby providing ≈40-fold activity enhancement and decreasing minimum reaction temperature from 65 to 60 °C. Based on this outstanding advance, a novel nucleic acid testing strategy is proposed, termed FAST, which is performed by using the 2'F-gDNA/TtAgo for target recognition and combining it with Bst DNA polymerase for nucleic acid amplification. By integrating G-quadruplex and Thioflavin T, the FAST assay achieves one-pot real-time fluorescence analysis with ultra-sensitivity, providing a limit of detection up to 5 copies (20 µL reaction mixture) for miR-21 detection. In summary, an atom-modification-based strategy has been developed for enhancing the cleavage activity of TtAgo efficiently, thereby improving its practicability and establishing a TtAgo-based nucleic acid testing technology with ultra-sensitivity and high-specificity.


Asunto(s)
ADN , Thermus thermophilus , Thermus thermophilus/genética , Thermus thermophilus/metabolismo , ADN/genética , ADN/metabolismo , ADN/química , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Ácidos Nucleicos/metabolismo , Ácidos Nucleicos/genética , Flúor/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA