Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Cell ; 75(2): 298-309.e4, 2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31103420

RESUMEN

Regulatory sequences or erroneous incorporations during DNA transcription cause RNA polymerase backtracking and inactivation in all kingdoms of life. Reactivation requires RNA transcript cleavage. Essential transcription factors (GreA and GreB, or TFIIS) accelerate this reaction. We report four cryo-EM reconstructions of Escherichia coli RNA polymerase representing the entire reaction pathway: (1) a backtracked complex; a backtracked complex with GreB (2) before and (3) after RNA cleavage; and (4) a reactivated, substrate-bound complex with GreB before RNA extension. Compared with eukaryotes, the backtracked RNA adopts a different conformation. RNA polymerase conformational changes cause distinct GreB states: a fully engaged GreB before cleavage; a disengaged GreB after cleavage; and a dislodged, loosely bound GreB removed from the active site to allow RNA extension. These reconstructions provide insight into the catalytic mechanism and dynamics of RNA cleavage and extension and suggest how GreB targets backtracked complexes without interfering with canonical transcription.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/química , Proteínas de Escherichia coli/química , Complejos Multiproteicos/química , ARN/química , Transcripción Genética , Factores de Elongación Transcripcional/química , Secuencia de Aminoácidos/genética , Dominio Catalítico/genética , Microscopía por Crioelectrón , ARN Polimerasas Dirigidas por ADN/genética , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Complejos Multiproteicos/genética , Unión Proteica , Conformación Proteica , ARN/genética , División del ARN/genética , Motivos de Unión al ARN/genética , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Elongación Transcripcional/genética
2.
Mol Cell ; 69(5): 816-827.e4, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29499136

RESUMEN

Transcriptional pausing by RNA polymerases (RNAPs) is a key mechanism to regulate gene expression in all kingdoms of life and is a prerequisite for transcription termination. The essential bacterial transcription factor NusA stimulates both pausing and termination of transcription, thus playing a central role. Here, we report single-particle electron cryo-microscopy reconstructions of NusA bound to paused E. coli RNAP elongation complexes with and without a pause-enhancing hairpin in the RNA exit channel. The structures reveal four interactions between NusA and RNAP that suggest how NusA stimulates RNA folding, pausing, and termination. An asymmetric translocation intermediate of RNA and DNA converts the active site of the enzyme into an inactive state, providing a structural explanation for the inhibition of catalysis. Comparing RNAP at different stages of pausing provides insights on the dynamic nature of the process and the role of NusA as a regulatory factor.


Asunto(s)
ARN Polimerasas Dirigidas por ADN , Proteínas de Escherichia coli , Escherichia coli , Pliegue del ARN , ARN Bacteriano , Terminación de la Transcripción Genética , Factores de Elongación Transcripcional , Dominio Catalítico , ADN Bacteriano/química , ADN Bacteriano/metabolismo , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , ARN Bacteriano/biosíntesis , ARN Bacteriano/química , Factores de Elongación Transcripcional/química , Factores de Elongación Transcripcional/metabolismo
3.
Nat Commun ; 13(1): 1546, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35318334

RESUMEN

RNA polymerase (RNAP) frequently pauses during the transcription of DNA to RNA to regulate gene expression. Transcription factors NusA and NusG modulate pausing, have opposing roles, but can bind RNAP simultaneously. Here we report cryo-EM reconstructions of Escherichia coli RNAP bound to NusG, or NusA, or both. RNAP conformational changes, referred to as swivelling, correlate with transcriptional pausing. NusA facilitates RNAP swivelling to further increase pausing, while NusG counteracts this role. Their structural effects are consistent with biochemical results on two categories of transcriptional pauses. In addition, the structures suggest a cooperative mechanism of NusA and NusG during Rho-mediated transcription termination. Our results provide a structural rationale for the stochastic nature of pausing and termination and how NusA and NusG can modulate it.


Asunto(s)
Proteínas de Escherichia coli , Factores de Transcripción , Proteínas Bacterianas/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Conformación de Ácido Nucleico , Factores de Elongación de Péptidos/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Factores de Elongación Transcripcional/metabolismo
4.
Commun Biol ; 4(1): 1273, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34754068

RESUMEN

Bromodomain-containing protein 4 (BRD4) is an epigenetic reader and oncology drug target that regulates gene transcription through binding to acetylated chromatin via bromodomains. Phosphorylation by casein kinase II (CK2) regulates BRD4 function, is necessary for active transcription and is involved in resistance to BRD4 drug inhibition in triple-negative breast cancer. Here, we provide the first biophysical analysis of BRD4 phospho-regulation. Using integrative structural biology, we show that phosphorylation by CK2 modulates the dimerization of human BRD4. We identify two conserved regions, a coiled-coil motif and the Basic-residue enriched Interaction Domain (BID), essential for the BRD4 structural rearrangement, which we term the phosphorylation-dependent dimerization domain (PDD). Finally, we demonstrate that bivalent inhibitors induce a conformational change within BRD4 dimers in vitro and in cancer cells. Our results enable the proposal of a model for BRD4 activation critical for the characterization of its protein-protein interaction network and for the development of more specific therapeutics.


Asunto(s)
Proteínas de Ciclo Celular/genética , Regulación de la Expresión Génica , Factores de Transcripción/genética , Quinasa de la Caseína II/genética , Quinasa de la Caseína II/metabolismo , Proteínas de Ciclo Celular/metabolismo , Humanos , Fosforilación , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA