RESUMEN
We performed a series of integrative analyses including transcriptome-wide association studies (TWASs) and proteome-wide association studies (PWASs) of renal cell carcinoma (RCC) to nominate and prioritize molecular targets for laboratory investigation. On the basis of a genome-wide association study (GWAS) of 29,020 affected individuals and 835,670 control individuals and prediction models trained in transcriptomic reference models, our TWAS across four kidney transcriptomes (GTEx kidney cortex, kidney tubules, TCGA-KIRC [The Cancer Genome Atlas kidney renal clear-cell carcinoma], and TCGA-KIRP [TCGA kidney renal papillary cell carcinoma]) identified 38 gene associations (false-discovery rate <5%) in at least two of four transcriptomic panels and identified 12 genes that were independent of GWAS susceptibility regions. Analyses combining TWAS associations across 48 tissues from GTEx identified associations that were replicable in tumor transcriptomes for 23 additional genes. Analyses by the two major histologic types (clear-cell RCC and papillary RCC) revealed subtype-specific associations, although at least three gene associations were common to both subtypes. PWAS identified 13 associated proteins, all mapping to GWAS-significant loci. TWAS-identified genes were enriched for active enhancer or promoter regions in RCC tumors and hypoxia-inducible factor binding sites in relevant cell lines. Using gene expression correlation, common cancers (breast and prostate) and RCC risk factors (e.g., hypertension and BMI) display genetic contributions shared with RCC. Our work identifies potential molecular targets for RCC susceptibility for downstream functional investigation.
Asunto(s)
Carcinoma de Células Renales , Estudio de Asociación del Genoma Completo , Neoplasias Renales , Proteoma , Transcriptoma , Carcinoma de Células Renales/genética , Humanos , Neoplasias Renales/genética , Proteoma/genética , Predisposición Genética a la Enfermedad , Regulación Neoplásica de la Expresión Génica , Polimorfismo de Nucleótido Simple , Perfilación de la Expresión GénicaRESUMEN
Accurate identification of cell cycle phases in single-cell RNA-sequencing (scRNA-seq) data is crucial for biomedical research. Many methods have been developed to tackle this challenge, employing diverse approaches to predict cell cycle phases. In this review article, we delve into the standard processes in identifying cell cycle phases within scRNA-seq data and present several representative methods for comparison. To rigorously assess the accuracy of these methods, we propose an error function and employ multiple benchmarking datasets encompassing human and mouse data. Our evaluation results reveal a key finding: the fit between the reference data and the dataset being analyzed profoundly impacts the effectiveness of cell cycle phase identification methods. Therefore, researchers must carefully consider the compatibility between the reference data and their dataset to achieve optimal results. Furthermore, we explore the potential benefits of incorporating benchmarking data with multiple known cell cycle phases into the analysis. Merging such data with the target dataset shows promise in enhancing prediction accuracy. By shedding light on the accuracy and performance of cell cycle phase prediction methods across diverse datasets, this review aims to motivate and guide future methodological advancements. Our findings offer valuable insights for researchers seeking to improve their understanding of cellular dynamics through scRNA-seq analysis, ultimately fostering the development of more robust and widely applicable cell cycle identification methods.
Asunto(s)
Benchmarking , Investigación Biomédica , Humanos , Animales , Ratones , Ciclo Celular , InvestigadoresRESUMEN
The emerging perovskite solar cell (PSC) technology has attracted significant attention due to its superior power conversion efficiency (PCE) among the thin-film photovoltaic technologies. However, the toxicity of lead and poor stability of lead halide materials hinder their commercialization. In this case, after a decade of effort, various categories of lead-free perovskites and perovskite-like materials have been developed, including tin halide perovskites, double perovskites, defect-structured perovskites, and rudorffites. However, the performance of the corresponding devices still falls short of expectations, especially their PCE. The limitations mainly originate from either the unstable lattice structure of these materials, which causes the distortion of their octahedra, or their low dimensionality (e.g., structural and electronic dimensionality)-correlated poor carrier transport and self-trapping effect, accelerating nonradiative recombination. Therefore, understanding the relationship between the structures and performance in these emerging candidates and leveraging these insights to design or modify new lead-free perovskites is of great significance. Herein, we review the variety of dimensionalities in different categories of lead-free perovskites and perovskite-like materials and conclude that dimensionality is an important aspect among the crucial indexes that determine the performance of lead-free PSCs. In addition, we summarize the modulation of both structural and electronic dimensionality, and the corresponding enhanced optoelectronic properties in different categories. Finally, perspectives on the future development of lead-free perovskites and perovskite-like materials for photovoltaic applications are provided. We hope that this review will provide researchers with a concise overview of these emerging materials and help them leverage dimensionality to break the bottleneck in photovoltaic applications.
RESUMEN
Goats have achieved global prominence as essential livestock since their initial domestication, primarily owing to their remarkable adaptability to diverse environmental and production systems. Differential selection pressures influenced by climate have led to variations in their physical attributes, leaving genetic imprints within the genomes of goat breeds raised in diverse agroecological settings. In light of this, our study pursued a comprehensive analysis, merging environmental data with single nucleotide polymorphism (SNP) variations, to unearth indications of selection shaped by climate-mediated forces in goats. Through the examination of 43,300 SNPs from 51 indigenous goat breeds adapting to different climatic conditions using four analytical methods: latent factor mixed models (LFMM), F-statistics (Fst), Extended haplotype homozygosity across populations (XPEHH), and spatial analysis method (SAM), A total of 74 genes were revealed to display clear signs of selection, which are believed to be influenced by climatic conditions. Among these genes, 32 were consistently identified by at least two of the applied methods, and three genes (DENND1A, PLCB1, and ITPR2) were confirmed by all four approaches. Moreover, our investigation yielded 148 Gene Ontology (GO) terms based on these 74 genes, underlining pivotal biological pathways crucial for environmental adaptation. These pathways encompass functions like vascular smooth muscle contraction, cellular response to heat, GTPase regulator activity, rhythmic processes, and responses to temperature stimuli. Of significance, GO terms about endocrine regulation and energy metabolic responses, key for local adaptation were also uncovered, including biological processes, such as cell differentiation, regulation of peptide hormone secretion, and lipid metabolism. These findings contribute to our knowledge of the genetic structure of climate-triggered adaptation across the goat genome and have practical implications for marker-assisted breeding in goats.
Asunto(s)
Clima , Genómica , Cabras , Polimorfismo de Nucleótido Simple , Selección Genética , Animales , Cabras/genética , Cabras/fisiología , Genómica/métodos , Adaptación Fisiológica/genética , Cruzamiento , HaplotiposRESUMEN
Although the research on aqueous batteries employing metal as the anode is still mainly focused on the aqueous zinc-ion battery, aqueous iron-ion batteries are considered as promising aqueous batteries owing to the lower cost, higher specific capacity, and better stability. However, the sluggish Fe2+ (de)intercalation leads to unsatisfactory specific capacity and poor electrochemical stability, which makes it difficult to find cathode materials with excellent electrochemical properties. Herein, phenylamine (PA)-intercalated VOPO4 materials with expanded interlayer spacing are synthesized and applied successfully in aqueous iron-ion batteries. Owing to enough diffusion space from the expanded interlayer, which can boost fast Fe2+ diffusion, the aqueous iron-ion battery shows a high specific capacity of 170 mAh g-1 at 0.2 A g-1 , excellent rate performance, and cycle stability (96.2% capacity retention after 2200 cycles). This work provides a new direction for cathode material design in the development of aqueous iron-ion batteries.
RESUMEN
Aqueous iron-ion batteries with reversible storage of Fe2+ have undergone rapid development in recent years. Consistently throughout these studies, metallic iron is selected as the anode material. However, the large overpotential (250 mV) associated with the plating/stripping process of iron in aqueous solutions leads to unsatisfactory energy efficiency of the battery, although high capacity and Coulomb efficiency can be achieved. Herein, an iron-free anode material, 9,10-anthraquinone (AQ) is proposed in aqueous iron-ion batteries, which shows a low reaction potential and minimal polarization during storing iron ions. The organic anode exhibits favorable specific capacity of 106 mAh g-1 at 0.5 A g-1 and excellent cycling stability (92.6% retention after 500 cycles). In addition, an aqueous full iron-ion battery is constructed using AQ as the anode and 9,10-phenanthraquinone (PQ) as the cathode. The full battery demonstrates an enhanced energy efficiency of 72%, which is 206% higher than that of metal iron anode, and shows excellent cycling stability and Coulombic efficiency. This work provides a viable route to overcome the high polarization of metallic iron anode and promote the development of aqueous iron-ion batteries.
RESUMEN
The microphenotype plays a key role in bridging the gap between the genotype and the complex macro phenotype. In this article, we review the advances in data acquisition and the intelligent analysis of plant microphenotyping and present applications of microphenotyping in plant science over the past two decades. We then point out several challenges in this field and suggest that cross-scale image acquisition strategies, powerful artificial intelligence algorithms, advanced genetic analysis, and computational phenotyping need to be established and performed to better understand interactions among genotype, environment, and management. Microphenotyping has entered the era of Microphenotyping 3.0 and will largely advance functional genomics and plant science.
Asunto(s)
Inteligencia Artificial , Genómica , Fenotipo , Genómica/métodos , Genotipo , Plantas/genéticaRESUMEN
BACKGROUND: Myelodysplastic syndrome (MDS) is a complicated hematopoietic malignancy characterized by bone marrow (BM) dysplasia with symptoms like anemia, neutropenia, or thrombocytopenia. MDS exhibits considerable heterogeneity in prognosis, with approximately 30% of patients progressing to acute myeloid leukemia (AML). Single cell RNA-sequencing (scRNA-seq) is a new and powerful technique to profile disease landscapes. However, the current available scRNA-seq datasets for MDS are only focused on CD34+ hematopoietic progenitor cells. We argue that using entire BM cell for MDS studies probably will be more informative for understanding the pathophysiology of MDS. METHODS: Five MDS patients and four healthy donors were enrolled in the study. Unsorted cells from BM aspiration were collected for scRNA-seq analysis to profile overall alteration in hematopoiesis. RESULTS: Standard scRNA-seq analysis of unsorted BM cells successfully profiles deficient hematopoiesis in all five MDS patients, with three classified as high-risk and two as low-risk. While no significant increase in mutation burden was observed, high-risk MDS patients exhibited T-cell activation and abnormal myelogenesis at the stages between hematopoietic stem and progenitor cells (HSPC) and granulocyte-macrophage progenitors (GMP). Transcriptional factor analysis on the aberrant myelogenesis suggests that the epigenetic regulator chromatin structural protein-encoding gene HMGA1 is highly activated in the high-risk MDS group and moderately activated in the low-risk MDS group. Perturbation of HMGA1 by CellOracle simulated deficient hematopoiesis in mouse Lineage-negative (Lin-) BM cells. Projecting MDS and AML cells on a BM cell reference by our newly developed MarcoPolo pipeline intuitively visualizes a connection for myeloid leukemia development and abnormalities of hematopoietic hierarchy, indicating that it is technically feasible to integrate all diseased bone marrow cells on a common reference map even when the size of the cohort reaches to 1,000 patients or more. CONCLUSION: Through scRNA-seq analysis on unsorted cells from BM aspiration samples of MDS patients, this study systematically profiled the development abnormalities in hematopoiesis, heterogeneity of risk, and T-cell microenvironment at the single cell level.
Asunto(s)
Genómica , Hematopoyesis , Síndromes Mielodisplásicos , Análisis de la Célula Individual , Humanos , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/patología , Hematopoyesis/genética , Femenino , Masculino , Persona de Mediana Edad , Anciano , Células Madre Hematopoyéticas/metabolismo , Microambiente Celular , Mutación/genéticaRESUMEN
As a representative gas of food spoilage, the development of rapid hydrogen sulfide (H2S) analysis strategies for food safety control is in great demand. Despite traditional methods for H2S detection possessing great achievements, they are still incapable of meeting the requirement of portability and quantitative detection at the same time. Herein, a nanozyme catalysis pressure-powered sensing platform that enables visual quantification with the naked eye is proposed. In this methodology, Pt nanozyme inherits the catalase-like activity to facilitate the decomposition of H2O2 to O2, which can significantly improve the pressure in the closed container, further pushing the movement of indicator dye. Furthermore, H2S was found to effectively inhibit the catalytic activity of Pt nanozyme, indicating that the catalase-like activity of PtNPs may be regulated by varying concentrations of H2S. Therefore, by utilizing a self-designed pressure-powered microchannel device, the concentration of H2S was successfully converted into a distinct signal variation in distance. The effectiveness of the as-designed sensor in assessing the spoilage of red wine by H2S determination has been demonstrated. It exhibits a strong correlation between the change in dye distance and H2S concentration within the range of 1-250 µM, with a detection limit of 0.17 µM. This method is advantageous as it enhances the quantitative detection of H2S with the naked eye based on the portable pressure-powered sensing platform, as compared to traditional H2S biosensors. Such a pressure-powered distance variation platform would greatly broaden the application of H2S-based detection in food spoilage management.
Asunto(s)
Sulfuro de Hidrógeno , Límite de Detección , Sulfuro de Hidrógeno/análisis , Catálisis , Vino/análisis , Platino (Metal)/química , Peróxido de Hidrógeno/análisis , Presión , Nanopartículas del Metal/química , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Análisis de los Alimentos/métodos , Análisis de los Alimentos/instrumentaciónRESUMEN
Avian influenza (AI), caused by H9N2 subtype avian influenza virus (AIV), poses a serious threat to poultry farming and public health due to its transmissibility and pathogenicity. The PB2 protein is a major component of the viral RNA polymerase complex. It is of great importance to identify the antigenic determinants of the PB2 protein to explore the function of the PB2 protein. In this study, the PB2 sequence of H9N2 subtype AIV, from 1090 to 1689 bp, was cloned and expressed. The recombinant PB2 protein with cutting gel was used to immunize BALB/c mice. After cell fusion, the hybridoma cell lines secreting monoclonal antibodies (mAbs) targeting the PB2 protein were screened by indirect ELISA and western blotting, and the antigenic epitopes of mAbs were identified by constructing truncated overlapping fragments in the PB2 protein of H9N2 subtype AIV. The results showed that three hybridoma cell lines (4B7, 4D10, and 5H1) that stably secreted mAbs specific to the PB2 protein were screened; the heavy chain of 4B7 was IgG2α, those of 4D10 and 5H1 were IgG1, and all three mAbs had kappa light chain. Also, the minimum B-cell epitope recognized was 475LRGVRVSK482 and 528TITYSSPMMW537. Homology analysis showed that these two epitopes were conserved among the different subtypes of AIV strains and located on the surface of the PB2 protein. The above findings provide an experimental foundation for further investigation of the function of the PB2 protein and developing monoclonal antibody-based diagnostic kits.
Asunto(s)
Anticuerpos Monoclonales , Epítopos de Linfocito B , Subtipo H9N2 del Virus de la Influenza A , Gripe Aviar , Ratones Endogámicos BALB C , Proteínas Virales , Subtipo H9N2 del Virus de la Influenza A/inmunología , Subtipo H9N2 del Virus de la Influenza A/genética , Animales , Anticuerpos Monoclonales/inmunología , Proteínas Virales/genética , Proteínas Virales/inmunología , Proteínas Virales/metabolismo , Ratones , Gripe Aviar/virología , Gripe Aviar/inmunología , Epítopos de Linfocito B/inmunología , Hibridomas , ARN Polimerasa Dependiente del ARN/genética , Anticuerpos Antivirales/inmunología , Pollos/virología , FemeninoRESUMEN
Adoptive cellular immunotherapy as a promising and alternative cancer therapy platform is critical for future clinical applications. Natural killer (NK) cells have attracted attention as an important type of innate immune regulatory cells that can rapidly kill multiple adjacent cancer cells. However, these cells are significantly less effective in treating solid tumors than in treating hematological tumors. Herein, we report the synthesis of a Fe3O4-PEG-CD56/Avastin@Ce6 nanoprobe labeled with NK-92 cells that can be used for adoptive cellular immunotherapy, photodynamic therapy and dual-modality imaging-based in vivo fate tracking. The labeled NK-92 cells specifically target the tumor cells, which increases the amount of cancer cell apoptosis in vitro. Furthermore, the in vivo results indicate that the labeled NK-92 cells can be used for tumor magnetic resonance imaging and fluorescence imaging, adoptive cellular immunotherapy, and photodynamic therapy after tail vein injection. These data show that the developed multifunctional nanostructure is a promising platform for efficient innate immunotherapy, photodynamic treatment and noninvasive therapeutic evaluation of breast cancer.
Asunto(s)
Neoplasias de la Mama , Antígeno CD56 , Células Asesinas Naturales , Fotoquimioterapia , Polietilenglicoles , Neoplasias de la Mama/terapia , Humanos , Femenino , Animales , Fotoquimioterapia/métodos , Ratones , Polietilenglicoles/química , Línea Celular Tumoral , Antígeno CD56/metabolismo , Inmunoterapia Adoptiva/métodos , Apoptosis/efectos de los fármacos , Imagen por Resonancia Magnética/métodos , Ratones Endogámicos BALB C , Ratones DesnudosRESUMEN
The vascular bundle in the ear-internode of maize is a key conduit for transporting photosynthetic materials between "source" and "sink", making it critically important to examine its micro-phenotypes and genetic architecture to identify advantageous characteristics and cultivate high-yielding and high-quality varieties. Unfortunately, the limited observation methods and scope of study precludes any comprehensive and systematic investigations into the microscopic phenotypes and genetic mechanisms of vascular bundle in maize ear-internode. In this study, 47 phenotypic traits were extracted in 495 maize inbred lines using micro computed tomography (Micro-CT) scanning technology and a deep learning-based phenotype acquisition method for stem vascular bundle, which included stem slice-related, epidermis zone-related, periphery zone-related, inner zone-related and vascular bundles-related traits. Phenotypic analysis indicated that there was extensive phenotypic variation of vascular bundle traits in ear-internode, especially that in the inner zone. Of these, 30 phenotypic traits with heritability greater than 0.70 were conducted for GWAS, and a total of 4,225 significant SNPs and 416 candidate genes with detailed functional annotations were identified. Furthermore, 20 genes were highly expressed in stem-related tissues, especially in maize internodes. Functional analysis of candidate genes indicated that the pathways obtained for candidate genes of different trait groups were distinct, mainly involved in vitamin synthesis and metabolism, transport of substances, carbohydrate derivative catabolic process, protein transport and localization, and anatomical structure development. The results of this study will help to further understand the phenotypic traits of stem vascular bundles and provide a reference for revealing the genetic mechanism of maize ear-internode vascular bundles.
Asunto(s)
Estudio de Asociación del Genoma Completo , Fenotipo , Zea mays , Zea mays/genética , Zea mays/anatomía & histología , Haz Vascular de Plantas/genética , Haz Vascular de Plantas/anatomía & histología , Tallos de la Planta/genética , Tallos de la Planta/anatomía & histología , Tallos de la Planta/crecimiento & desarrollo , Microtomografía por Rayos X , Polimorfismo de Nucleótido SimpleRESUMEN
The ancestors of marine mammals once roamed the land and independently committed to an aquatic lifestyle. These macroevolutionary transitions have intrigued scientists for centuries. Here, we generated high-quality genome assemblies of 17 marine mammals (11 cetaceans and six pinnipeds), including eight assemblies at the chromosome level. Incorporating previously published data, we reconstructed the marine mammal phylogeny and population histories and identified numerous idiosyncratic and convergent genomic variations that possibly contributed to the transition from land to water in marine mammal lineages. Genes associated with the formation of blubber (NFIA), vascular development (SEMA3E), and heat production by brown adipose tissue (UCP1) had unique changes that may contribute to marine mammal thermoregulation. We also observed many lineage-specific changes in the marine mammals, including genes associated with deep diving and navigation. Our study advances understanding of the timing, pattern, and molecular changes associated with the evolution of mammalian lineages adapting to aquatic life.
Asunto(s)
Adaptación Fisiológica , Evolución Molecular , Genoma , Genómica , Mamíferos/fisiología , Filogenia , Termogénesis/genética , Animales , Factores de Transcripción NFI/genética , Factores de Transcripción NFI/metabolismo , Selección Genética , Semaforinas/genética , Semaforinas/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismoRESUMEN
The distribution of polycyclic aromatic hydrocarbons (PAHs) in the ocean is affected by the sorption-desorption process of sediment particles. This process is determined by the concentration of PAHs in seawater, water temperature, and organic matter content of sediment particles. Quantitative relationships between the net sorption rates (=the difference of sorption and desorption rates) and these factors have not been established yet and used in PAH transport models. In this study, phenanthrene was chosen as the representative of PAHs. Three groups of experimental data were collected to address the dependence of the net sorption processes on the initial concentration, water temperature, and organic carbon content representing organic matter content. One-site and two-compartment mass-transfer models were tested to represent the experimental data using various parameters. The results showed that the two-compartment mass-transfer model performed better than the one-site mass-transfer model. The parameters of the two-compartment mass-transfer model include the sorption rate coefficients kafand kas (L g-1 min-1), and the desorption rate coefficients kdf and kds (min-1). The parameters at different temperatures and organic carbon contents were obtained by numerical simulations. Linear relationships were obtained between the parameters and water temperature, as well as organic carbon content. kaf, kas and kdf decreased linearly, while kds increased linearly with temperature. kaf, kas and kdf increased linearly, while kds decreased linearly with organic carbon content. The r2 values between the simulation results based on the relationships and the experimental results reached 0.96-0.99, which supports the application of the model to simulate sorption-desorption processes at different water temperatures and organic carbon contents in a realistic ocean.
Asunto(s)
Sedimentos Geológicos , Fenantrenos , Agua de Mar , Temperatura , Contaminantes Químicos del Agua , Fenantrenos/química , Sedimentos Geológicos/química , Adsorción , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Agua de Mar/química , Monitoreo del Ambiente/métodos , Modelos Teóricos , Modelos QuímicosRESUMEN
Hyperaccumulators are the material basis and key to the phytoremediation of heavy metal contaminated soils. Conventional methods for screening hyperaccumulators are highly dependent on the time- and labor-consuming sampling and chemical analysis. In this study, a novel spectral approach assisted with multi-task deep learning was proposed to streamline accumulating ecotype screening, heavy metal stress discrimination, and heavy metals quantification in plants. The significant Cd/Zn co-hyperaccumulator Sedum alfredii and its non-accumulating ecotype were stressed by Cd, Zn, and Pb. Spectral images of leaves were rapidly acquired by hyperspectral imaging. The self-designed deep learning architecture was composed of a shallow network (ENet) for accumulating ecotype identification, and a multi-task network (HMNet) for heavy metal stress type and accumulation prediction simultaneously. To further assess the robustness of the networks, they were compared with conventional machine learning models (i.e., partial least squares (PLS) and support vector machine (SVM)) on a series of evaluation metrics of classification, multi-label classification, and regression. S. alfredii with heavy metals accumulation capability was identified by ENet with 100â¯% accuracy. HMNet reduced overfitting and outperformed machine learning models with the average exact match ratio (EMR) of heavy metal stress discrimination increased by 7.46â¯%, and residual prediction deviations (RPD) of heavy metal concentrations prediction increased by 53.59â¯%. The method succeeded in rapidly and accurately discriminating heavy metal stress with EMRs over 91â¯% and accuracies over 96â¯%, and in predicting heavy metals accumulation with an average RPD of 3.29 for Zn, 2.57 for Cd, and 2.53 for Pb, indicating the satisfactory practicability and potential for sensing heavy metals accumulation. This study provides a relatively novel spectral method to facilitate hyperaccumulator screening and heavy metals accumulation prediction in the phytoremediation process.
Asunto(s)
Biodegradación Ambiental , Aprendizaje Profundo , Metales Pesados , Sedum , Contaminantes del Suelo , Sedum/efectos de los fármacos , Sedum/metabolismo , Metales Pesados/análisis , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis , Imágenes Hiperespectrales/métodos , Hojas de la Planta/metabolismo , Cadmio/metabolismo , Cadmio/toxicidad , Zinc/metabolismo , Zinc/análisis , Máquina de Vectores de SoporteRESUMEN
Hydrogen sulfide (H2S) has been shown to play a significant role in oxidative stress across various tissues and cells; however, its role in sperm function remains poorly understood. This study aimed to investigate the protective effect of GYY4137, a slow-releasing H2S compound, on sperm damage induced by H2O2. We assessed the effects of GYY4137 on motility, viability, lipid peroxidation and caspase-3 activity in human spermatozoa in vitro following oxidative damage mediated by H2O2. Spermatozoa from 25 healthy men were selected using a density gradient centrifugation method and cultured in the presence or absence of 10 µM H2O2, followed by incubation with varying concentrations of GYY4137 (0.625-2.5 µM). After 24 h of incubation, sperm motility, viability, lipid peroxidation, and caspase-3 activity were evaluated. The results indicated that H2O2 adversely affected sperm parameters, reducing motility and viability, while increasing oxidative stress, as evidenced by elevated lipid peroxidation and caspase-3 activity. GYY4137 provided dose-dependent protection against H2O2-induced oxidative stress (OS). We concluded that supplementation with GYY4137 may offer antioxidant protection during in vitro sperm preparation for assisted reproductive technology.
RESUMEN
The measures to prevent COVID-19 pandemic had caused significant life changes, which may have caused stress on the mental health of children and adolescents. We aimed to evaluate the short- and long-term effects of life changes on children's mental health in a large Chinese cohort. Survey-based life changes during COVID-19 lockdown were measured among 7,829 Chinese students at Grade 1-9, including social contacts, lifestyles and family financial status. Clustering analysis was applied to identify potential patterns of these changes. Depressive and anxiety symptoms were measured using the Center for Epidemiologic Studies Depression Scale and Screen for Child Anxiety Related Emotional Disorders. Logistic regression models were used to investigate the associations between these changes, their patterns and the presence of depression/anxiety symptoms using both cross-sectional and longitudinal designs. We found that the prevalence of depression and anxiety symptoms decreased during pandemic (34.6-32.6%). However, during and shortly after lockdown, students who reported negative impacts on their study, social and outside activities, and diet had increased risks of depressive/anxiety symptoms. Decreased electronic time and sugar-sweetened consumption, as well as family income decline and unemployment, were also associated with higher risks of these symptoms. Additionally, students with changed sleep time had increased depressive symptoms. These associations attenuated or disappeared one year later. Similar patterns were observed in clustering analysis, while only the group with severe impact on family financial status showed a sustained increase in depression symptoms. In summary, restrictive measures that changed children and adolescents' daily life during COVID-19 lockdown showed negative effects on their mental health, with some commonalities and distinctions patterns in the manifestation of depression and anxiety symptoms.
RESUMEN
Dimpropyridaz as a novel insecticide is registered for the management of many aphid species and other piercing-sucking insects. For the aim to clarify the susceptibility of natural population and the resistance risk of dimpropyridaz in Aphis gossypii in China, the baseline susceptibility, risk assessment, changes of insecticides sensitivity and fitness after selection of dimpropyridaz in A. gossypii were evaluated in present study. The results showed that dimpropyridaz exhibited high activity against 23 field populations of A. gossypii from cotton planting regions in China with LC50 values ranging from 0.37 to 8.93 mg/L, which indicating a 24.14-fold natural susceptibility variability between the most sensitive and the most selected populations. Based on the dimpropyridaz susceptibilities of 23 field populations, the sensitivity baseline of A. gossypii to dimpropyridaz was established with the LC50 value as 1.29 mg/L. Additionally, the resistance risk of A. gossypii to dimpropyridaz was evaluated by continuously selecting both a susceptible laboratory population and a field Tulufan population. After 10 selections with dimpropyridaz, no significant dimpropyridaz resistance increased in both populations, with the realized heritability were estimated as 0.01 and 0.04 for the two populations respectively, and this meant low resistance risk to dimpropyridaz of A. gossypii. In addition, the sensitivities of the dimpropyridaz selected population to imidacloprid, acetamiprid and sulfoxaflor displayed some reduction, whereas no significant changes in sensitivity to afidopyropen, carbosulfan and bifenthrin. However, the dimpropyridaz selected population showed a low fitness, with fitness as 0.73. These results provide important information for development of effective resistance management strategies of dimpropyridaz in A. gossypii.
Asunto(s)
Áfidos , Resistencia a los Insecticidas , Insecticidas , Animales , Áfidos/efectos de los fármacos , Áfidos/fisiología , Insecticidas/farmacología , Resistencia a los Insecticidas/genética , Medición de Riesgo , Piridazinas/farmacología , Piridinas/farmacologíaRESUMEN
BACKGROUND: The axonemal microtubules of primary cilium undergo a conserved protein posttranslational modification (PTM) - polyglutamylation. This reversible procedure is processed by tubulin tyrosine ligase-like polyglutamylases to form secondary polyglutamate side chains, which are metabolized by the 6-member cytosolic carboxypeptidase (CCP) family. Although polyglutamylation modifying enzymes have been linked to ciliary architecture and motility, it was unknown whether they also play a role in ciliogenesis. RESULTS: In this study, we found that CCP5 expression is transiently downregulated upon the initiation of ciliogenesis, but recovered after cilia are formed. Overexpression of CCP5 inhibited ciliogenesis, suggesting that a transient downregulation of CCP5 expression is required for ciliation initiation. Interestingly, the inhibitory effect of CCP5 on ciliogenesis does not rely on its enzyme activity. Among other 3 CCP members tested, only CCP6 can similarly suppress ciliogenesis. Using CoIP-MS analysis, we identified a protein that potentially interacts with CCP - CP110, a known negative regulator of ciliogenesis, whose degradation at the distal end of mother centriole permits cilia assembly. We found that both CCP5 and CCP6 can modulate CP110 level. Particularly, CCP5 interacts with CP110 through its N-terminus. Loss of CCP5 or CCP6 led to the disappearance of CP110 at the mother centriole and abnormally increased ciliation in cycling RPE-1 cells. Co-depletion of CCP5 and CCP6 synergized this abnormal ciliation, suggesting their partially overlapped function in suppressing cilia formation in cycling cells. In contrast, co-depletion of the two enzymes did not further increase the length of cilia, although CCP5 and CCP6 differentially regulate polyglutamate side-chain length of ciliary axoneme and both contribute to limiting cilia length, suggesting that they may share a common pathway in cilia length control. Through inducing the overexpression of CCP5 or CCP6 at different stages of ciliogenesis, we further demonstrated that CCP5 or CCP6 inhibited cilia formation before ciliogenesis, while shortened the length of cilia after cilia formation. CONCLUSION: These findings reveal the dual role of CCP5 and CCP6. In addition to regulating cilia length, they also retain CP110 level to suppress cilia formation in cycling cells, pointing to a novel regulatory mechanism for ciliogenesis mediated by demodifying enzymes of a conserved ciliary PTM, polyglutamylation.
Asunto(s)
Carboxipeptidasas , Cilios , Proteínas Asociadas a Microtúbulos , Células HEK293 , Humanos , Carboxipeptidasas/fisiología , Proteínas Asociadas a Microtúbulos/fisiología , Cilios/fisiología , MicrotúbulosRESUMEN
Influenza virus infection poses a great threat to human health globally each year. Non-coding RNAs (ncRNAs) in the human genome have been reported to participate in the replication process of the influenza virus, among which there are still many unknowns about Long Intergenic Non-Coding RNAs (LincRNAs) in the cell cycle of viral infections. Here, we observed an increased expression of Linc01615 in A549 cells upon influenza virus PR8 infection, accompanied by the successful activation of the intracellular immune system. The knockdown of Linc01615 using the shRNAs promoted the proliferation of the influenza A virus, and the intracellular immune system was inhibited, in which the expressions of IFN-ß, IL-28A, IL-29, ISG-15, MX1, and MX2 were decreased. Predictions from the catRAPID website suggested a potential interaction between Linc01615 and DHX9. Also, knocking down Linc01615 promoted influenza virus proliferation. The subsequent transcriptome sequencing results indicated a decrease in Linc01615 expression after influenza virus infection when DHX9 was knocked down. Further analysis through cross-linking immunoprecipitation and high-throughput sequencing (CLIP-seq) in HEK293 cells stably expressing DHX9 confirmed the interaction between DHX9 and Linc01615. We speculate that DHX9 may interact with Linc01615 to partake in influenza virus replication and that Linc01615 helps to activate the intracellular immune system. These findings suggest a deeper connection between DHX9 and Linc01615, which highlights the significant role of Linc01615 in the influenza virus replication process. This research provides valuable insights into understanding influenza virus replication and offers new targets for preventing influenza virus infections.