Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 212
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 156(4): 836-43, 2014 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-24486104

RESUMEN

Monkeys serve as important model species for studying human diseases and developing therapeutic strategies, yet the application of monkeys in biomedical researches has been significantly hindered by the difficulties in producing animals genetically modified at the desired target sites. Here, we first applied the CRISPR/Cas9 system, a versatile tool for editing the genes of different organisms, to target monkey genomes. By coinjection of Cas9 mRNA and sgRNAs into one-cell-stage embryos, we successfully achieve precise gene targeting in cynomolgus monkeys. We also show that this system enables simultaneous disruption of two target genes (Ppar-γ and Rag1) in one step, and no off-target mutagenesis was detected by comprehensive analysis. Thus, coinjection of one-cell-stage embryos with Cas9 mRNA and sgRNAs is an efficient and reliable approach for gene-modified cynomolgus monkey generation.


Asunto(s)
Marcación de Gen/métodos , Macaca fascicularis/genética , Animales , Secuencia de Bases , Línea Celular , Embrión de Mamíferos/metabolismo , Femenino , Humanos , Datos de Secuencia Molecular , Mosaicismo , Alineación de Secuencia
2.
Nature ; 612(7941): 725-731, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36517592

RESUMEN

Ribosomes are highly sophisticated translation machines that have been demonstrated to be heterogeneous in the regulation of protein synthesis1,2. Male germ cell development involves complex translational regulation during sperm formation3. However, it remains unclear whether translation during sperm formation is performed by a specific ribosome. Here we report a ribosome with a specialized nascent polypeptide exit tunnel, RibosomeST, that is assembled with the male germ-cell-specific protein RPL39L, the paralogue of core ribosome (RibosomeCore) protein RPL39. Deletion of RibosomeST in mice causes defective sperm formation, resulting in substantially reduced fertility. Our comparison of single-particle cryo-electron microscopy structures of ribosomes from mouse kidneys and testes indicates that RibosomeST features a ribosomal polypeptide exit tunnel of distinct size and charge states compared with RibosomeCore. RibosomeST predominantly cotranslationally regulates the folding of a subset of male germ-cell-specific proteins that are essential for the formation of sperm. Moreover, we found that specialized functions of RibosomeST were not replaceable by RibosomeCore. Taken together, identification of this sperm-specific ribosome should greatly expand our understanding of ribosome function and tissue-specific regulation of protein expression pattern in mammals.


Asunto(s)
Fertilidad , Ribosomas , Espermatozoides , Animales , Masculino , Ratones , Microscopía por Crioelectrón/métodos , Péptidos/química , Péptidos/metabolismo , Biosíntesis de Proteínas , Pliegue de Proteína , Ribosomas/metabolismo , Espermatozoides/citología , Espermatozoides/metabolismo , Fertilidad/fisiología , Especificidad de Órganos , Proteínas Ribosómicas , Riñón/citología , Testículo/citología
3.
Mol Cell ; 80(3): 525-540.e9, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33068521

RESUMEN

Well-balanced and timed metabolism is essential for making a high-quality egg. However, the metabolic framework that supports oocyte development remains poorly understood. Here, we obtained the temporal metabolome profiles of mouse oocytes during in vivo maturation by isolating large number of cells at key stages. In parallel, quantitative proteomic analyses were conducted to bolster the metabolomic data, synergistically depicting the global metabolic patterns in oocytes. In particular, we discovered the metabolic features during meiotic maturation, such as the fall in polyunsaturated fatty acids (PUFAs) level and the active serine-glycine-one-carbon (SGOC) pathway. Using functional approaches, we further identified the key targets mediating the action of PUFA arachidonic acid (ARA) on meiotic maturation and demonstrated the control of epigenetic marks in maturing oocytes by SGOC network. Our data serve as a broad resource on the dynamics occurring in metabolome and proteome during oocyte maturation.


Asunto(s)
Meiosis/fisiología , Oocitos/metabolismo , Animales , Epigénesis Genética/genética , Ácidos Grasos Insaturados/metabolismo , Femenino , Metaboloma/fisiología , Ratones , Ratones Endogámicos C57BL , Oogénesis/genética , Oogénesis/fisiología , Proteoma/metabolismo , Proteómica
4.
Development ; 150(12)2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37218508

RESUMEN

The accumulation and storage of maternal mRNA is crucial for oocyte maturation and embryonic development. PATL2 is an oocyte-specific RNA-binding protein, and previous studies have confirmed that PATL2 mutation in humans and knockout mice cause oocyte maturation arrest or embryonic development arrest, respectively. However, the physiological function of PATL2 in the process of oocyte maturation and embryonic development is largely unknown. Here, we report that PATL2 is highly expressed in growing oocytes and couples with EIF4E and CPEB1 to regulate maternal mRNA expression in immature oocytes. The germinal vesicle oocytes from Patl2-/- mice exhibit decreasing maternal mRNA expression and reduced levels of protein synthesis. We further confirmed that PATL2 phosphorylation occurs in the oocyte maturation process and identified the S279 phosphorylation site using phosphoproteomics. We found that the S279D mutation decreased the protein level of PATL2 and led to subfertility in Palt2S279D knock-in mice. Our work reveals the previously unrecognized role of PATL2 in regulating the maternal transcriptome and shows that phosphorylation of PATL2 leads to the regulation of PATL2 protein levels via ubiquitin-mediated proteasomal degradation in oocytes.


Asunto(s)
Factor 4E Eucariótico de Iniciación , Proteínas Nucleares , ARN Mensajero Almacenado , Proteínas de Unión al ARN , Animales , Femenino , Humanos , Ratones , Embarazo , Factor 4E Eucariótico de Iniciación/metabolismo , Homeostasis , Ratones Noqueados , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Proteínas Nucleares/metabolismo , Oocitos/metabolismo , ARN Mensajero/metabolismo , ARN Mensajero Almacenado/metabolismo , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/metabolismo
5.
Brief Bioinform ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38426320

RESUMEN

Protein subcellular localization (PSL) is very important in order to understand its functions, and its movement between subcellular niches within cells plays fundamental roles in biological process regulation. Mass spectrometry-based spatio-temporal proteomics technologies can help provide new insights of protein translocation, but bring the challenge in identifying reliable protein translocation events due to the noise interference and insufficient data mining. We propose a semi-supervised graph convolution network (GCN)-based framework termed TransGCN that infers protein translocation events from spatio-temporal proteomics. Based on expanded multiple distance features and joint graph representations of proteins, TransGCN utilizes the semi-supervised GCN to enable effective knowledge transfer from proteins with known PSLs for predicting protein localization and translocation. Our results demonstrate that TransGCN outperforms current state-of-the-art methods in identifying protein translocations, especially in coping with batch effects. It also exhibited excellent predictive accuracy in PSL prediction. TransGCN is freely available on GitHub at https://github.com/XuejiangGuo/TransGCN.


Asunto(s)
Habilidades de Afrontamiento , Proteómica , Minería de Datos , Espectrometría de Masas , Transporte de Proteínas
6.
PLoS Biol ; 21(11): e3002369, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37956172

RESUMEN

Although advances in single-cell technologies have enabled the characterization of multiple omics profiles in individual cells, extracting functional and mechanistic insights from such information remains a major challenge. Here, we present scapGNN, a graph neural network (GNN)-based framework that creatively transforms sparse single-cell profile data into the stable gene-cell association network for inferring single-cell pathway activity scores and identifying cell phenotype-associated gene modules from single-cell multi-omics data. Systematic benchmarking demonstrated that scapGNN was more accurate, robust, and scalable than state-of-the-art methods in various downstream single-cell analyses such as cell denoising, batch effect removal, cell clustering, cell trajectory inference, and pathway or gene module identification. scapGNN was developed as a systematic R package that can be flexibly extended and enhanced for existing analysis processes. It provides a new analytical platform for studying single cells at the pathway and network levels.


Asunto(s)
Redes Reguladoras de Genes , Multiómica , Biología Computacional/métodos , Redes Neurales de la Computación
7.
Mol Cell Proteomics ; 22(1): 100481, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36496143

RESUMEN

Meiotic maturation is an intricate and precisely regulated process orchestrated by various pathways and numerous proteins. However, little is known about the proteome landscape during oocytes maturation. Here, we obtained the temporal proteomic profiles of mouse oocytes during in vivo maturation. We successfully quantified 4694 proteins from 4500 oocytes in three key stages (germinal vesicle, germinal vesicle breakdown, and metaphase II). In particular, we discovered the novel proteomic features during oocyte maturation, such as the active Skp1-Cullin-Fbox pathway and an increase in mRNA decay-related proteins. Using functional approaches, we further identified the key factors controlling the histone acetylation state in oocytes and the vital proteins modulating meiotic cell cycle. Taken together, our data serve as a broad resource on the dynamics occurring in oocyte proteome and provide important knowledge to better understand the molecular mechanisms during germ cell development.


Asunto(s)
Proteoma , Proteómica , Ratones , Animales , Proteoma/metabolismo , Oogénesis , Oocitos/metabolismo , Núcleo Celular/metabolismo , Meiosis
8.
Mol Cell Proteomics ; 22(6): 100564, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37146716

RESUMEN

Spermatogenesis defects are important for male infertility; however, the etiology and pathogenesis are still unknown. Herein, we identified two loss-of-function mutations of STK33 in seven individuals with non-obstructive azoospermia. Further functional studies of these frameshift and nonsense mutations revealed that Stk33-/KI male mice were sterile, and Stk33-/KI sperm were abnormal with defects in the mitochondrial sheath, fibrous sheath, outer dense fiber, and axoneme. Stk33KI/KI male mice were subfertile and had oligoasthenozoospermia. Differential phosphoproteomic analysis and in vitro kinase assay identified novel phosphorylation substrates of STK33, fibrous sheath components A-kinase anchoring protein 3 and A-kinase anchoring protein 4, whose expression levels decreased in testis after deletion of Stk33. STK33 regulated the phosphorylation of A-kinase anchoring protein 3/4, affected the assembly of fibrous sheath in the sperm, and played an essential role in spermiogenesis and male infertility.


Asunto(s)
Proteínas de Anclaje a la Quinasa A , Infertilidad Masculina , Humanos , Masculino , Ratones , Animales , Proteínas de Anclaje a la Quinasa A/metabolismo , Semen/metabolismo , Espermatozoides/metabolismo , Espermatogénesis/fisiología , Cola del Espermatozoide/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Flagelos/metabolismo
9.
J Mol Cell Cardiol ; 189: 66-82, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38432502

RESUMEN

The regenerative capacity of the adult mammalian heart is limited, while the neonatal heart is an organ with regenerative and proliferative ability. Activating adult cardiomyocytes (CMs) to re-enter the cell cycle is an effective therapeutic method for ischemic heart disease such as myocardial infarction (MI) and heart failure. Here, we aimed to reveal the role and potential mechanisms of cellular nucleic acid binding protein (CNBP) in cardiac regeneration and repair after heart injury. CNBP is highly expressed within 7 days post-birth while decreases significantly with the loss of regenerative ability. In vitro, overexpression of CNBP promoted CM proliferation and survival, whereas knockdown of CNBP inhibited these processes. In vivo, knockdown of CNBP in CMs robustly hindered myocardial regeneration after apical resection in neonatal mice. In adult MI mice, CM-specific CNBP overexpression in the infarct border zone ameliorated myocardial injury in acute stage and facilitated CM proliferation and functional recovery in the long term. Quantitative proteomic analysis with TMT labeling showed that CNBP overexpression promoted the DNA replication, cell cycle progression, and cell division. Mechanically, CNBP overexpression increased the expression of ß-catenin and its downstream target genes CCND1 and c-myc; Furthermore, Luciferase reporter and Chromatin immunoprecipitation (ChIP) assays showed that CNBP could directly bind to the ß-catenin promoter and promote its transcription. CNBP also upregulated the expression of G1/S-related cell cycle genes CCNE1, CDK2, and CDK4. Collectively, our study reveals the positive role of CNBP in promoting cardiac repair after injury, providing a new therapeutic option for the treatment of MI.


Asunto(s)
Corazón , Miocitos Cardíacos , Proteínas de Unión al ARN , Animales , Ratones , beta Catenina/genética , beta Catenina/metabolismo , Proliferación Celular , Mamíferos/metabolismo , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Ácidos Nucleicos/metabolismo , Proteómica , Factores de Transcripción/metabolismo , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Regeneración , Corazón/fisiología
10.
J Proteome Res ; 23(6): 2137-2147, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38787631

RESUMEN

N-glycosylation is one of the most universal and complex protein post-translational modifications (PTMs), and it is involved in many physiological and pathological activities. Owing to the low abundance of N-glycoproteins, enrichment of N-glycopeptides for mass spectrometry analysis usually requires a large amount of peptides. Additionally, oocyte protein N-glycosylation has not been systemically characterized due to the limited sample amount. Here, we developed a glycosylation enrichment method based on lectin and a single-pot, solid-phase-enhanced sample preparation (SP3) technology, termed lectin-based SP3 technology (LectinSP3). LectinSP3 immobilized lectin on the SP3 beads for N-glycopeptide enrichment. It could identify over 1100 N-glycosylation sites and 600 N-glycoproteins from 10 µg of mouse testis peptides. Furthermore, using the LectinSP3 method, we characterized the N-glycoproteome of 1000 mouse oocytes in three replicates and identified a total of 363 N-glycosylation sites from 215 N-glycoproteins. Bioinformatics analysis revealed that these oocyte N-glycoproteins were mainly enriched in cell adhesion, fertilization, and sperm-egg recognition. Overall, the LectinSP3 method has all procedures performed in one tube, using magnetic beads. It is suitable for analysis of a low amount of samples and is expected to be easily adaptable for automation. In addition, our mouse oocyte protein N-glycosylation profiling could help further characterize the regulation of oocyte functions.


Asunto(s)
Glicopéptidos , Glicoproteínas , Lectinas , Oocitos , Proteómica , Animales , Oocitos/metabolismo , Ratones , Glicosilación , Glicoproteínas/metabolismo , Glicoproteínas/química , Glicoproteínas/análisis , Lectinas/química , Lectinas/metabolismo , Proteómica/métodos , Femenino , Glicopéptidos/análisis , Glicopéptidos/química , Procesamiento Proteico-Postraduccional , Masculino , Testículo/metabolismo , Testículo/química , Proteoma/análisis , Proteoma/metabolismo
11.
J Biol Chem ; 299(10): 105183, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37611828

RESUMEN

Emerging research and clinical evidence suggest that the metabolic activity of oocytes may play a pivotal role in reproductive anomalies. However, the intrinsic mechanisms governing oocyte development regulated by metabolic enzymes remain largely unknown. Our investigation demonstrates that geranylgeranyl diphosphate synthase1 (Ggps1), the crucial enzyme in the mevalonate pathway responsible for synthesizing isoprenoid metabolite geranylgeranyl pyrophosphate from farnesyl pyrophosphate, is essential for oocyte maturation in mice. Our findings reveal that the deletion of Ggps1 that prevents protein prenylation in fully grown oocytes leads to subfertility and offspring metabolic defects without affecting follicle development. Oocytes that lack Ggps1 exhibit disrupted mitochondrial homeostasis and the mitochondrial defects arising from oocytes are inherited by the fetal offspring. Mechanistically, the excessive farnesylation of mitochondrial ribosome protein, Dap3, and decreased levels of small G proteins mediate the mitochondrial dysfunction induced by Ggps1 deficiency. Additionally, a significant reduction in Ggps1 levels in oocytes is accompanied by offspring defects when females are exposed to a high-cholesterol diet. Collectively, this study establishes that mevalonate pathway-protein prenylation is vital for mitochondrial function in oocyte maturation and provides evidence that the disrupted protein prenylation resulting from an imbalance between farnesyl pyrophosphate and geranylgeranyl pyrophosphate is the major mechanism underlying impairment of oocyte quality induced by high cholesterol.

12.
Development ; 148(13)2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34104941

RESUMEN

Zygotic genomic activation (ZGA) is a landmark event in the maternal-to-zygotic transition (MZT), and the regulation of ZGA by maternal factors remains to be elucidated. In this study, the depletion of maternal ring finger protein 114 (RNF114), a ubiquitin E3 ligase, led to developmental arrest of two-cell mouse embryos. Using immunofluorescence and transcriptome analysis, RNF114 was proven to play a crucial role in major ZGA. To study the underlying mechanism, we performed protein profiling in mature oocytes and found a potential substrate for RNF114, chromobox 5 (CBX5), ubiquitylation and degradation of which was regulated by RNF114. The overexpression of CBX5 prevented embryonic development and impeded major ZGA. Furthermore, TAB1 was abnormally accumulated in mutant two-cell embryos, which was consistent with the result of in vitro knockdown of Rnf114. Knockdown of Cbx5 or Tab1 in maternal RNF114-depleted embryos partially rescued developmental arrest and the defect of major ZGA. In summary, our study reveals that maternal RNF114 plays a precise role in degrading some important substrates during the MZT, the misregulation of which may impede the appropriate activation of major ZGA in mouse embryos.


Asunto(s)
Desarrollo Embrionario/fisiología , Genoma , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Cigoto/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/genética , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Sistema de Señalización de MAP Quinasas/genética , Ratones , Factores de Transcripción/metabolismo , Transcriptoma
13.
Brief Bioinform ; 23(4)2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35656712

RESUMEN

Multiplexed single-cell proteomes (SCPs) quantification by mass spectrometry greatly improves the SCP coverage. However, it still suffers from a low number of protein identifications and there is much room to boost proteins identification by computational methods. In this study, we present a novel framework DeepSCP, utilizing deep learning to boost SCP coverage. DeepSCP constructs a series of features of peptide-spectrum matches (PSMs) by predicting the retention time based on the multiple SCP sample sets and fragment ion intensities based on deep learning, and predicts PSM labels with an optimized-ensemble learning model. Evaluation of DeepSCP on public and in-house SCP datasets showed superior performances compared with other state-of-the-art methods. DeepSCP identified more confident peptides and proteins by controlling q-value at 0.01 using target-decoy competition method. As a convenient and low-cost computing framework, DeepSCP will help boost single-cell proteome identification and facilitate the future development and application of single-cell proteomics.


Asunto(s)
Aprendizaje Profundo , Proteoma , Péptidos/química , Proteoma/metabolismo , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos
14.
Mol Cell Proteomics ; 21(8): 100267, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35809850

RESUMEN

Oocyte maturation is pertinent to the success of in vitro maturation (IVM), which is used to overcome female infertility, and produced over 5000 live births worldwide. However, the quality of human IVM oocytes has not been investigated at single-cell proteome level. Here, we quantified 2094 proteins in human oocytes during in vitro and in vivo maturation (IVO) by single-cell proteomic analysis and identified 176 differential proteins between IVO and germinal vesicle oocytes and 45 between IVM and IVO oocytes including maternal effect proteins, with potential contribution to the clinically observed decreased fertilization, implantation, and birth rates using human IVM oocytes. IVM and IVO oocytes showed separate clusters in principal component analysis, with higher inter-cell variability among IVM oocytes, and have little correlation between mRNA and protein changes during maturation. The patients with the most aberrantly expressed proteins in IVM oocytes had the lowest level of estradiol per mature follicle on trigger day. Our data provide a rich resource to evaluate effect of IVM on oocyte quality and study mechanism of oocyte maturation.


Asunto(s)
Técnicas de Maduración In Vitro de los Oocitos , Proteómica , Femenino , Humanos , Oocitos , Oogénesis , Análisis de la Célula Individual
15.
BMC Biol ; 21(1): 94, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-37095490

RESUMEN

BACKGROUND: Circular RNAs (circRNAs) are a large class of mammalian RNAs. Several protein products translated by circRNAs have been reported to be involved in the development of various tissues and systems; however, their physiological functions in male reproduction have yet not been explored. RESULTS: Here, we report an endogenous circRNA (circRsrc1) that encodes a novel 161-amino-acid protein which we named Rsrc1-161aa through circRNA sequencing coupled with mass spectrometry analysis on mouse testicular tissues. Deletion of Rsrc1-161aa in mice impaired male fertility with a significant decrease in sperm count and motility due to dysfunctions of mitochondrial energy metabolism. A series of in vitro rescue experiments revealed that circRsrc1 regulates mitochondrial functions via its encoded protein Rsrc1-161aa. Mechanistically, Rsrc1-161aa directly interacts with mitochondrial protein C1qbp and enhances its binding activity to mitochondrial mRNAs, thereby regulating the assembly of mitochondrial ribosomes and affecting the translation of oxidative phosphorylation (OXPHOS) proteins and mitochondrial energy metabolism. CONCLUSIONS: Our studies reveal that Rsrc1-161aa protein encoded by circRsrc1 regulates mitochondrial ribosome assembly and translation during spermatogenesis, thereby affecting male fertility.


Asunto(s)
Ribosomas Mitocondriales , ARN Circular , Masculino , Animales , Ratones , Ribosomas Mitocondriales/metabolismo , ARN Circular/metabolismo , Semen/metabolismo , Espermatogénesis , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Mamíferos/genética , Biosíntesis de Proteínas
16.
BMC Biol ; 21(1): 89, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37069605

RESUMEN

BACKGROUND: Sperm is formed through spermiogenesis, a highly complex process involving chromatin condensation that results in cessation of transcription. mRNAs required for spermiogenesis are transcribed at earlier stages and translated in a delayed fashion during spermatid formation. However, it remains unknown that how these repressed mRNAs are stabilized. RESULTS: Here we report a Miwi-interacting testis-specific and spermiogenic arrest protein, Ck137956, which we rename Tssa. Deletion of Tssa led to male sterility and absence of sperm formation. The spermiogenesis arrested at the round spermatid stage and numerous spermiogenic mRNAs were down-regulated in Tssa-/- mice. Deletion of Tssa disrupted the localization of Miwi to chromatoid body, a specialized assembly of cytoplasmic messenger ribonucleoproteins (mRNPs) foci present in germ cells. We found that Tssa interacted with Miwi in repressed mRNPs and stabilized Miwi-interacting spermiogenesis-essential mRNAs. CONCLUSIONS: Our findings indicate that Tssa is indispensable in male fertility and has critical roles in post-transcriptional regulations by interacting with Miwi during spermiogenesis.


Asunto(s)
Proteínas Argonautas , Semen , Espermatogénesis , Animales , Masculino , Ratones , Fertilidad/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Semen/metabolismo , Espermatogénesis/genética , Testículo/metabolismo , Proteínas Argonautas/genética
17.
J Proteome Res ; 22(7): 2186-2198, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37314414

RESUMEN

The study of protein subcellular localization (PSL) is a fundamental step toward understanding the mechanism of protein function. The recent development of mass spectrometry (MS)-based spatial proteomics to quantify the distribution of proteins across subcellular fractions provides us a high-throughput approach to predict unknown PSLs based on known PSLs. However, the accuracy of PSL annotations in spatial proteomics is limited by the performance of existing PSL predictors based on traditional machine learning algorithms. In this study, we present a novel deep learning framework named DeepSP for PSL prediction of an MS-based spatial proteomics data set. DeepSP constructs the new feature map of a difference matrix by capturing detailed changes between different subcellular fractions of protein occupancy profiles and uses the convolutional block attention module to improve the prediction performance of PSL. DeepSP achieved significant improvement in accuracy and robustness for PSL prediction in independent test sets and unknown PSL prediction compared to current state-of-the-art machine learning predictors. As an efficient and robust framework for PSL prediction, DeepSP is expected to facilitate spatial proteomics studies and contributes to the elucidation of protein functions and the regulation of biological processes.


Asunto(s)
Aprendizaje Profundo , Proteómica , Proteómica/métodos , Proteínas/metabolismo , Algoritmos , Espectrometría de Masas
18.
J Biol Chem ; 298(9): 102327, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35931115

RESUMEN

Nonobstructive azoospermia (NOA) is the most serious form of spermatogenesis abnormalities in male infertility. Genetic factors are important to consider as elements leading to NOA. Although many pathogenic genes have been reported, the causative genes of NOA for many patients are still unknown. In this study, we found ten point mutations in the gene encoding homeodomain-interacting protein kinase 4 (HIPK4) in patients with NOA, and using in vitro studies, we determined a premature termination point mutation (p. Lys490∗, c.1468A>T) that can cause decreased expression of HIPK4. Our phosphoproteomic analysis of Hipk4-/- testes revealed phosphorylation of multiple proteins regulated by HIPK4 during spermiogenesis. We also confirmed that a substrate of HIPK4 with four downregulated phosphorylation sites matching the xSPx motif is the known manchette-related protein RIMS-binding protein 3, which is required for sperm head morphogenesis. Therefore, we conclude HIPK4 regulates the phosphorylation of manchette protein RIMS-binding protein 3 and plays essential roles in sperm head shaping and male fertility.


Asunto(s)
Azoospermia , Codón sin Sentido , Proteínas del Citoesqueleto , Proteínas Serina-Treonina Quinasas , Cabeza del Espermatozoide , Espermatogénesis , Azoospermia/genética , Azoospermia/metabolismo , Proteínas del Citoesqueleto/metabolismo , Humanos , Masculino , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Cabeza del Espermatozoide/metabolismo , Espermatogénesis/genética , Testículo/metabolismo
19.
Cell Mol Life Sci ; 79(8): 467, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35930080

RESUMEN

Meiosis, a highly conserved process in organisms from fungi to mammals, is subjected to protein phosphorylation regulation. Due to the low abundance of phosphorylation, there is a lack of systemic characterization of phosphorylation regulation of meiosis in mammals. Using the phosphoproteomic approach, we profiled large-scale phosphoproteome of purified primary spermatocytes undergoing meiosis I, and identified 14,660 phosphorylation sites in 4419 phosphoproteins. Kinase-substrate phosphorylation network analysis followed by in vitro meiosis study showed that CDK9 was essential for meiosis progression to metaphase I and had enriched substrate phosphorylation sites in proteins involved in meiotic cell cycle. In addition, histones and epigenetic factors were found to be widely phosphorylated. Among those, HASPIN was found to be essential for male fertility. Haspin knockout led to misalignment of chromosomes, apoptosis of metaphase spermatocytes and a decreased number of sperm by deregulation of H3T3ph, chromosomal passenger complex (CPC) and spindle assembly checkpoint (SAC). The complicated protein phosphorylation and its important regulatory functions in meiosis indicated that in-depth studies of phosphorylation-mediated signaling could help us elucidate the mechanisms of meiosis.


Asunto(s)
Meiosis , Semen , Animales , Histonas/metabolismo , Masculino , Mamíferos/metabolismo , Metafase , Ratones , Fosforilación , Semen/metabolismo , Espermatocitos
20.
Cell Mol Life Sci ; 80(1): 19, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36574072

RESUMEN

Congenital heart disease (CHD) is the most common birth defect worldwide and a main cause of perinatal and infant mortality. Our previous genome-wide association study identified 53 SNPs that associated with CHD in the Han Chinese population. Here, we performed functional screening of 27 orthologous genes in zebrafish using injection of antisense morpholino oligos. From this screen, 5 genes were identified as essential for heart development, including iqgap2, ptprt, ptpn22, tbck and maml3. Presumptive roles of the novel CHD-related genes include heart chamber formation (iqgap2 and ptprt) and atrioventricular canal formation (ptpn22 and tbck). While deficiency of maml3 led to defective cardiac trabeculation and consequent heart failure in zebrafish embryos. Furthermore, we found that maml3 mutants showed decreased cardiomyocyte proliferation which caused a reduction in cardiac trabeculae due to inhibition of Notch signaling. Together, our study identifies 5 novel CHD-related genes that are essential for heart development in zebrafish and first demonstrates that maml3 is required for Notch signaling in vivo.


Asunto(s)
Cardiopatías Congénitas , Defectos de los Tabiques Cardíacos , Animales , Pez Cebra/genética , Estudio de Asociación del Genoma Completo , Corazón , Cardiopatías Congénitas/genética , Proteínas de Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA