Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Geochem Health ; 46(2): 51, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38227065

RESUMEN

The previous studies have shown that iron-manganese co-oxide film (MeOx) could simultaneously remove ammonium, manganese ion and bisphenol A. In this study, the removal of fulvic acid (FA) was explored by adding potassium ferrate (K2FeO4) to heighten the catalytic activity of MeOx. After adding about 3.0 mg/L potassium ferrate, the elimination efficiency of 7.0 mg/L FA by the MeOx increased from 20 to 50%. The effects of temperature and ammonium on the elimination of FA were investigated. Higher temperature (above 22 °C) and higher ammonium concentration (above 2.0 mg/L) caused a decrease in FA removal. Most of FA combined with the ferric hydroxide colloid produced by K2FeO4 in water to form macromolecular groups, and they were subsequently absorbed and covered on the surface of MeOx. Scanning electron microscope showed that more viscous flocs appeared on the surface of MeOx, and the film thickness became thicker. Electron energy-dispersive spectrometer analysis revealed a notable increased in the C-O element ratio and a significant decreased in the Mn-Fe element ratio on the surface of MeOx. From Fourier transform infrared spectroscopy, the content of transition metal carbonyl compounds increased in the surface of MeOx. XPS analysis confirmed that the presence of Fe3O4, FeO, Mn2O3 and Mn3O4 along with functional group substances of FA attached on the surface of MeOx. The removal mechanism of FA was studied.


Asunto(s)
Compuestos de Amonio , Benzopiranos , Compuestos de Hierro , Hierro , Compuestos de Manganeso , Compuestos de Potasio , Agua , Manganeso , Óxidos , Carbono
2.
J Environ Sci (China) ; 34: 20-7, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26257342

RESUMEN

To solve the problem of shortened backwashing intervals in groundwater plants, several disinfectants including ozone (O3), hydrogen peroxide (H2O2) and chlorine dioxide (ClO2) were examined to peel off the film from the quartz sand surface in four pilot-scale columns. An optimized oxidant dosage and oxidation time were determined by batch tests. Subsequently, the optimized conditions were tested in the four pilot-scale columns. The results demonstrated that the backwashing intervals increased from 35.17 to 54.33 (H2O2) and to 53.67 hr (ClO2) after the oxidation treatments, and the increase of backwashing interval after treatment by O3 was much less than for the other two treatments. Interestingly, the treatment efficiency of filters was not affected by O3 or H2O2 oxidation; but after oxidation by ClO2, the treatment efficiency was deteriorated, especially the ammonia removal (from 96.96% to 24.95%). The filter sands before and after the oxidation were characterized by scanning electron microscopy and X-ray photoelectron spectroscopy. Compared with the oxidation by O3 and H2O2, the structures on the surface of filter sands were seriously damaged after oxidation by ClO2. The chemical states of manganese on the surfaces of those treated sands were only changed by ClO2. The damage of the structures and the change of the chemical states of manganese might have a negative effect on the ammonia removal. In summary, H2O2 is a suitable agent for film peeling.


Asunto(s)
Cloro/química , Desinfectantes/química , Peróxido de Hidrógeno/química , Ozono/química , Purificación del Agua/métodos , Filtración , Oxidación-Reducción , Dióxido de Silicio/química , Calidad del Agua
3.
Bioresour Technol ; 397: 130466, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38373501

RESUMEN

Forming and maintaining stable aerobic granular sludge (AGS) at a low superficial gas velocity (SGV) is challenging, particularly with polymeric substrates. This study cultivated filamentous aerobic granular sludge (FAGS) with filamentous Kouleothrix (Type 1851) at low SGV (0.15 cm/s) utilizing mixed acetate-soluble starch. Within approximately 260 days, notable increases in the relative abundance of Kouleothrix (from 4 % to 10 %) and Ca. Competibacter (from 1 % to 26 %) were observed through 16S rRNA gene analysis. Metagenomic analysis revealed increased expression of functional genes involved in volatile fatty acid (VFA) production (e.g., ackA and pta) and polyhydroxyalkanoate synthesis (e.g., phbB and phbC). Kouleothrix acted as a skeleton for bacterial attachment and was the key fermenting bacteria promoting granulation and maintaining granule stability. This study provides insight into the formation of FAGS with low-energy and non-VFA substrates.


Asunto(s)
Reactores Biológicos , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , ARN Ribosómico 16S , Reactores Biológicos/microbiología , Bacterias/metabolismo , Aerobiosis , Polímeros/metabolismo , Eliminación de Residuos Líquidos
4.
Membranes (Basel) ; 12(5)2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35629853

RESUMEN

Methyl-modified niobium-doped silica (Nb/SiO2) materials with various Nb/Si molar ratios (nNb) were fabricated using tetraethoxysilane and methyltriethoxysilane as the silica source and niobium pentachloride as the niobium source by the sol-gel method, and the Nb/SiO2 membranes were prepared thereof by the dip-coating process under an N2 calcining atmosphere. Their microstructures were characterized and gas permeances tested. The results showed that the niobium element existed in the formation of the Nb-O groups in the Nb/SiO2 materials. When the niobium doping content and the calcining temperature were large enough, the Nb2O5 crystals could be formed in the SiO2 frameworks. With the increase of nNb and calcination temperature, the formed particle sizes increased. The doping of Nb could enhance the H2/CO2 and H2/N2 permselectivities of SiO2 membranes. When nNb was equal to 0.08, the Nb/SiO2 membrane achieved a maximal H2 permeance of 4.83 × 10-6 mol·m-2·Pa-1·s-1 and H2/CO2 permselectivity of 15.49 at 200 °C and 0.1 MPa, which also exhibited great hydrothermal stability and thermal reproducibility.

5.
Materials (Basel) ; 14(15)2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34361380

RESUMEN

Methyl-modified, cobalt-doped silica (Co/MSiO2) materials were synthesized by sol-gel technique calcined in N2 atmospheres, and membranes were made thereof by coating method. The effects of Co/Si molar ratio (nCo) on the physical-chemical constructions of Co/MSiO2 materials and microstructures of Co/MSiO2 membranes were systematically investigated. The gas permeance performance and hydrothermal stability of Co/MSiO2 membranes were also tested. The results show that the cobalt element in Co/MSiO2 material calcined at 400 °C exists not only as Si-O-Co bond but also as Co3O4 and CoO crystals. The introduction of metallic cobalt and methyl can enlarge the total pore volume and average pore size of the SiO2 membrane. The activation energy (Ea) values of H2, CO2, and N2 for Co/MSiO2 membranes are less than those for MSiO2 membranes. When operating at a pressure difference of 0.2 MPa and 200 °C compared with MSiO2 membrane, the permeances of H2, CO2, and N2 for Co/MSiO2 membrane with nCo = 0.08 increased by 1.17, 0.70, and 0.83 times, respectively, and the perm-selectivities of H2/CO2 and H2/N2 increased by 27.66% and 18.53%, respectively. After being steamed and thermally regenerated, the change of H2 permeance and H2 perm-selectivities for Co/MSiO2 membrane is much smaller than those for MSiO2 membrane.

6.
RSC Adv ; 11(53): 33798-33808, 2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-35497537

RESUMEN

Ammonium and manganese removal by tunnel-structured manganese oxide is still enigmatic. Herein, tunnel-structured akhtenskites with different structural cations (Na-MnO x , Mg-MnO x Ca-MnO x , Fe-MnO x ) were synthesized by the KMnO4 and Mn2+ reaction in the presence of different metal cations, and were used to remove ammonium and manganese from aqueous solution. The results of the batch adsorption experiments indicated that akhtenskites effectively removed NH4 + and Mn2+, and the removal process fitted the pseudo-second-order model. By measuring the concentration of nitrate and nitrite, discriminating the adsorbed and oxidized Mn2+, and testing the zeta potential of the oxides, it can be concluded that NH4 + was merely removed by electrostatic adsorption via [triple bond, length as m-dash]Mn-O-; Mn2+ could also be adsorbed by ion exchange with [triple bond, length as m-dash]Mn-OH, and the adsorbed Mn2+ could be partly oxidized. The structural properties of the akhtenskites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) specific area, and X-ray photoelectron spectroscopy (XPS). The experimental results showed that ions with higher valence can result in a higher percentage of Mn(iii) in akhtenskite. Mg2+ can result in a lower proportion of lattice oxygen in the oxide, and Fe3+ can increase the pH of the point of zero charge. Both of them were unfavored for the oxidation of Mn2+. Moreover, it was found that Ca-MnO x had optimal removal performance in the catalytic oxidation of Mn2+ owing to appropriate percentages of Olatt and Mn(iii) and lower zeta potential. This study provides new insights into the synthesis and application of manganese oxides.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA